Research Article
Print
Research Article
New plant communities to define the southern boundary of the European Atlantic Province in mainland Portugal
expand article infoMauro Raposo, Sara del Río§, Francisco Vázquez-Pardo|, José Carlos Costa, Ana Cano-Ortiz#, Carlos Pinto-Gomes
‡ University of Évora, Évora, Portugal
§ University of Leon, León, Spain
| Centro de Investigación Finca La Orden-Valdesequera (CICYTEX), Guadajira, Spain
¶ Universidade de Lisboa, Lisboa, Portugal
# University of Jaen, Jaen, Spain
Open Access

Abstract

This study identifies and analyzes the plant communities that allow the definition of the geographic limits between Temperate and Mediterranean macrobioclimates, for the center of Portuguese mainland. The altitude of Serra da Estrela, Açor and Lousã, combined with the increase in atmospheric humidity, allows the presence of vegetation typical of a Temperate macrobioclimate. Thus, based on the phytosociological methodology, floristic relevés were carried out in order to identify the series of vegetation existing in these territories. Through these relevés carried out, four new plant associations were identified: Cytisetum grandifloro-striati ass. nova, Scrophulario grandiflorae-Sambucetum nigrae ass. nova, Pruno lusitanicae-Coryletum avellanae ass. nova that lives in the submediterranean bioclimatic variant, mesotemperate humid to hyper-humid. A new association namely Genisto falcatae-Quercetum broteroanae ass. nova with two subassociations were also identified. Based on the vegetation distribution, new biogeographic limits are proposed. Thus, it was intended to identify the southern limits of the European Atlantic Province (Atlantic Orolusitania Subrovince) based on the vegetation cover, namely the distinction between the Estrela Sierran District and a new Biogeographical District, the Alvo-Gardunhense.

Keywords

Biogeography, geobotany, native forest, relict vegetation, vegetation cover dynamics

Introduction

Despite the Temperate macrobioclimate's presence on all continents, it's more expressive in Eurasia and in North America (Rivas-Martínez et al. 2011). In the Iberian Peninsula, the Atlantic European Province has its southern limit in mainland Portugal, corresponding to the transition from the temperate macrobioclimate to the Mediterranean macrobioclimate. The distinction between Temperate and Mediterranean macrobioclimates is identified by the lack of aridity during at least two consecutive months in the summer as well as the higher mediterranean aridity during least two consecutive months (Rivas-Martínez et al. 2017a). In general, the European Atlantic Province is characterized by the dominance of a Temperate macrobioclimate, where most of the natural potential forests of Quercus robur L. and Fagus sylvatica L. develop (Rivas-Martínez et al. 2017b).

In the southernmost part of Portugal, the European Atlantic Province is delimited by the Estrela Sierran District, which is characterized by the submediterranean variant. This variant, although inserted in the temperate macrobioclimate, is defined by the existence of at least one month during the summer's quarter with an average precipitation in millimeters that is 2.8 tenths lower than the average temperature in degrees Celsius (Rivas-Martínez et al. 2017a).

Due to the terrain's elevation, the submediterranean variant extends to the central part of Portuguese mainland, through the Serra da Estrela, Açor and Lousã mountain ranges, constituting a block to the humid Atlantic winds that favor the precipitations of the relief (Pisani et al. 2019; Santos et al. 2017). Thus, the increase in humidity favors the occurrence of Quercus robur subsp. broteroana O. Schwartz, whose natural potential vegetation has been represented by the Viburno tini-Querco broteroanae sigmetum (Costa et al. 2015; Raposo et al. 2021). Although there are several works on the mountains' flora of central Portugal (Costa et al. 2012; Santos-Silva 1985; Silveira 2007; van der Knaap and van Leeuwen 1995), information on the plant communities that can be used as bioindicators of the temperate macrobioclimate is still lacking.

On the other hand, there is some difficulty in defining the boundaries for the Estrela Sierran District, considering the frequent erosion of the schist substrates at the lowest levels, due to strong slopes, promoting soil thiness and even the occurrence of outcrops. In these substrates, typical temperate plant communities (more demanding in terms of moisture) find it difficulty in settling, taking refuge in deep soils and north facing slopes exposed to the north quadrant (Connor et al. 2012). Although the Estrelense District was defined by Holco mollis-Quercetum pyrenaicae, Teucrium salviastri-Quercetum rotundifoliae, Frangulo alni-Prunetum lusitanicae and Viburno tini-Quercetum broteroanae (Costa et al. 2015; Rivas-Martínez et al. 2017b), there is a clear separation at 900/1000 meters of altitude between the series of potential vegetation. The temperature's reduction, signaled by the rise in altitude to the supertemperate, has resulted in the Quercus broteroana with Prunus lusitanica L. is disappearance and its alteration to Quercus pyrenaica Willd. groves. In terms of vegetation cover and landscape, this clear separation led us to study this territory's vegetation landscape in greater depth, as plant bioindicators can be a very useful tool in distinguishing and characterizing the environment, regarding thermicity, shoulder climate, edaphology and even the biogeographic limits of a given territory (Cano-Ortiz et al. 2022; Rivas-Martínez 2005).

Thus, since the main ecological characteristic of plants and plant communities is fidelity, based on plant bioindicators (Burger 2006; Parmar et al. 2016), we seek to improve the southern boundary of the European Atlantic Province. To achieve this objective, we tried to identify existing plant communities (with special attention to relics) and characterize them from a chorological, bioclimatic and edaphic point of view in order to select plant bioindicators to identify the submediterranean bioclimatic variant. Second, based on the distribution of identified taxa and syntaxa, we seek to identify the cartography that expresses the southern limit of the new biogeography for the European Atlantic Province.

Materials and methods

The studied territory is part of the mountains of the center of mainland Portugal, whose maximum elevation is located at 1,993 meters of altitude, including the Lousã-Açor-Estrela mountain range. It is a territory dominated by the Mediterranean pluviseasonal oceanic bioclimate and temperate oceanic, meso to supra, humid to ultrahyperhumid, semi-hyperoceanic to euoceanic (Rivas-Martínez et al. 2017). At the substrate level, siliceous rocks dominate, composed of greywacke, schist and granite at higher levels (Rodríguez Fernández et al. 2015). At the hydrographic level, Serra da Estrela gives rise to the two largest rivers that have their source in Portugal, the Mondego and the Zezere river. In Serra da Estrela, the river Alva is the most representative within the study area and flows into the Mondego. The Serra do Açor has its highest elevation in Pico da Ceboça, at 1,418 m a.s.l. and gives rise to the Ceira river, which flows into the Mondego. Serra da Lousã has its maximum elevation in Trevim, at about 1,205 m a.s.l. These three mountains are part of the Montejunto-Estrela mountain range and have a southwest-northeast orientation, crossing the national territory diagonally (Crispim 2008).

Taxonomic and syntaxonomic nomenclature follows up the work of Costa et al. (2012), complemented with Rivas-Martínez et al. (2002) and Rivas-Martínez (2011). Coutinho (1939), Franco (1971, 1984), Franco and Rocha-Afonso (1994) and Castroviejo et al. (1986) are used for plant identification. Plants with a subspecific epithet appear for the first time in the document in full and accompanied by the respective classifier. In the rest of the document they are abbreviated and presented only with the name of the genus and the subspecific epithet. For the syntaxa comparison tables, the caracteristic plants at the level of the association and higher units were used. In the relevé table, the plants' scientific name was abbreviated to the subspecific epiptet. The biogeographical and bioclimatic framework follows up the work of Rivas-Martínez et al. (2017a, 2017b). This work is conducted according to the the phytosociological method proposed by Braun-Blanquet (1979), Géhu and Rivas-Martínez (1981), Rivas-Martínez (2005) and updated by Biondi (2011). The International Code of Phytosociological Nomenclature (4th Editions) was used for the description of new plant communities (Theurillat et al. 2021).

For the numerical analysis, we collected 18 field relevés, which were compared with another 106 relevés from the literature review (Table 1). Due to the relict character of some communities, it was not possible to carry out more phytosociological relevés. For each community, from a floristic and biogeographic point of view, the closest associations existing in the Iberian Peninsula were used. For the hierarchical analysis, the characteristic plants at the association level were used. One hundred twenty-four relevés were submitted to hierarchial cluster analysis using Ward´s method with Euclidean distance to measure dissimilarity, using the software RStudio (Rodríguez-Guitián et al. 2007). The transformation of the cover-abundance values followed up Van der Maarel (1979).

Table 1.

Origin of the used relevés.

Communities Original relevés Bibliographic relevés Authors
Quercus robur L. s.l. 7 .
. 5 Braun-Blanquet et al. 1956
. 11 Honrado et al. 2002
. 4 Monteiro-Henriques 2010
. 4 Pinto da Silva et al. 1950
. 8 Rivas-Martínez et al. 2002
Corylus avellana L. 3 .
. 14 Amigo et al. 1994
. 8 Nicolau and Sánchez-Mata 2015
. 11 Rivas-Martínez et al. 2002
Cytisus striatus (Hill) Rothm. 5 .
. 4 Díaz and Prieto 1994
. 6 Pinto-Gomes et al. 2012
Sambucus nigra L. 3 .
. 4 Bolòs 1978
. 9 Silva et al. 2012
Total 18 88

Results and discussion

The fieldwork allowed a more detailed recognition of the Montemuro and Estrela Sierras Sector southern zone floristic identity (Atlantic Orolusitania Subprovince, European Atlantic Province). With the relevés and floristic analyzes four new plant communities and two subassociation of climatophilous oak forests of Genisto falcatae-Quercetum broteroanae were identified. These plant communities are typical of climatophilous and tempori-hygrophilous positions and have their own geographic identity, which contributes to the definition of biogeographical boundaries. Most of the identified associations belong to ecological positions of deep soils, taking into account the dynamics of the climatophilous oak forest series.

Analysis and description of plant communities

Cytisetum grandifloro-striati ass. nova hoc loco

Synecology and Synstructure : Siliceous community dominated by Cytisus striatus (Hill) Rothm. that colonizes clearings and forest edges on deep soils (Holotypus associationis hoc loco: Table 2, relevé 5). After a fire, vigorous regeneration is frequent, forming very dense brooms. It occurs in territories influenced by a submediterranean bioclimate, with a mesotemperate thermotype, a humid to hyper-humid shoulder type and a semi-hyperoceanic continentality. In its composition, the presence of Cytisus grandiflorus (Brot.) DC., Genista falcata Brot. and Adenocarpus complicatus (L.) J. Gay stands out. It is distinguished from the Lavandulo viridis-Cytisetum striati, which develops in the southwest of the Iberian Peninsula under a sub-humid thermomediterranean bioclimate, due to the absence of Lavandula viridis L´Hér. The most similar community is Ulici latebracteati-Cytisetum striati from northwest Portugal, which develops under a humid to hyper-humid thermotemperate bioclimate, but is distinguished by the absence of Ulex europaeus subsp. latebracteatus (Mariz) Rothm. (Figure 1). In order to highlight the floristic differences between the Cytisus striatus associations, the characteristic plants are presented in Table 3.

Table 2.

Relevés of Cytisetum grandifloro-striati ass. nova hoc loco (Cytisetea scopario-striati, Cytisetalia scopario-striati, Ulici europaei-Cytision striati).

Nº of relevé 1 2 3 4 5* Presence
Altitude (m) 560 450 770 690 680
Area (m²) 60 50 60 70 80
Cover (%) 75 80 90 85 95
Slope (%) 10 8 15 10 15
Average height (m) 2.5 2 2 2 2.5
Exposition SE NO SO E N
Nº of taxa 16 17 18 20 29
Characteristics
Cytisus striatus (Hill) Rothm 4 5 5 4 4 V
Cytisus grandiflorus (Brot.) DC. 2 + . 1 2 IV
Pteridium aquilinum (L.) Kuntz 1 . + 2 1 IV
Genista falcata Brot. + . + 2 1 IV
Adenocarpus complicatus (L.) J. Gay + 1 . . . II
Orobanche rapum-genistae Thuill. . . . . + I
Companions
Calluna vulgaris (L.) Hull. + 1 + 1 2 V
Halimium alyssoides (Lam.) C. Koch 1 1 1 . + IV
Cistus psilosepalus Sweet + . 1 1 + IV
Pterospartum lasianthum (Spach) Willk. 1 . + + 1 IV
Erica aragonensis (Willk) Cout. 1 + + . + IV
Agrostis curtisii Kerguélen + 1 . + + IV
Campanula lusitanica L. . + 1 + + IV
Arbutus unedo L. . + 1 + + IV
Erica arborea L. . 1 . + + III
Agrostis castellana Boiss. & Reut. . 1 + . + III
Digitalis purpurea L. . + . 1 + III
Genista triacanthos Brot. . . 1 + + III
Quercus broteroana O. Schwartz + . + . + III
Lithodora prostrata (Loisel) Griseb. + + . + . III
Erica cinerea L. + . + + . III
Rubus ulmifolius Schott . + + . + III
Arenaria montana L. . + . + + III
Lavandula luisieri (Rozeira) Rivas Mart. . . + + + III
Cistus populifolius L. + . . + . II
Viburnum tinus L. + . . . + II
Holcus lanatus L. . + . . + II
Castanea sativa Mill. . . + . + II
Linaria triorniphophora (L.) Willd. . . + . + II
Ruscus aculeatus L. . . . + + II
Table 3.

Summary table of associations dominated by Cytisus striatus. A) Cytisetum grandifloro-striati ass. nova; B) Lavandulo viridis-Cytisetum striati; C) Ulici latebracteati-Cytisetum striati.

A B C
Cytisus striatus (Hill) Rothm V V V
Cytisus grandiflorus (Brot.) DC. IV . .
Pteridium aquilinum (L.) Kuntz IV II IV
Genista falcata Brot. IV . .
Adenocarpus complicatus (L.) J. Gay II . .
Orobanche rapum-genistae Thuill. I . .
Lavandula viridis L’Hér. . V .
Erica arborea L. . III III
Ulex latebracteatus (Mariz) Rothm. . . IV
Cytisus multiflorus (L’Hér.) Sweet . . II
Cytisus scoparius (L.) Link . . II
Adenocarpus lainzii Castrov. . . I
Figure 1. 

Dendrogram of Cytisus striatus communities. Rels 1–5: Cytisetum grandifloro-striati ass. nova; rels 6–11: Lavandulo viridis-Cytisetum striati Pinto-Gomes, Cano-Ortiz, Quinto-Canas, Vila-Viçosa & Martínez-Lombardo 2012; rels 12–15: Ulici latebracteati-Cytisetum striati Rivas-Martínez ex J.C. Costa, Izco, Lousã, Aguiar & Capelo in J.C. Costa, Capelo, Lousã, Antunes, Aguiar, Izco & Ladero 2000.

Synchorology : The soil's strong erosion has reduced the potential area for this gyestal occurrence; however, the new Alvo-Gardunhense District here defined is its ecological optimum. This association is well represented in Serra do Açor, as well as in the União de Freguesias de Vide e Cabeça.

Syndynamics and catenal contacts : This broom constitutes a replacement stage and integrates the edge of the climatophilous series of oak-alvarinho of Viburno tini-Querco broteroanae sigmetum. It frequently comes into contact with the Portuguese-laurel of Frangulo alni-Prunetum lusitanicae and with the heliophilous communities of the Calluno-Ulicetea class´s degraded soils.

Scrophulario grandiflorae-Sambucetum nigrae ass. nova hoc loco

Synecology and Synstructure : Siliceous community dominated by Sambucus nigra that develops along water courses and surface runoff of nitrophilous water, on deep soils with high organic matter. It occurs in territories influenced by a submediterranean bioclimate, with a meso to supratemperate thermotype, a humid to hyper-humid shoulder type and a semi-hyperoceanic continentality. In its composition, the presence of several elements of the Galio-Urticetea class, namely Urtica dioica L., Scrophularia grandiflora DC. and Alliaria petiolata (M. Bieb.) Cavara & Grande (Holotypus associationis hoc loco: Table 4, relevé 3). It is distinguished from Clematido vitalbae-Sambucetum nigrae by the absence of taxa such as Cornus sanguinea L., Rubus caesius L., Euonymus europaeus L. and Hedera helix L., as well as being distributed throughout the northeast of the Iberian Peninsula, at a chorological level (Bolòs 1978). More recently, Rubo vigoi-Sambucetum nigrae was described for the Serra de Sintra and Portalegre, growing on slightly nitrified siliceous substrates and in a humid thermomediterranean bioclimate (Silva et al. 2012).

However, several taxa distinguish these associations, especially the presence of elements with a more temperate hue such as Scrophularia grandiflora, Hypericum androsaemum L., Prunus lusitanica, Ilex aquifolium L., Quercus broteroana, Primula acaulis L. and Salix salviifolia Brot. (Figure 2). In order to highlight the floristic differences between the Sambucus nigra L. associations, the characteristic plants are shown in Table 5.

Figure 2. 

Dendrogram of Sambucus nigra communities. Rels 1–9: Clematido vitalbae-Sambucetum nigrae O. Bolòs 1978; rels 10–12: Scrophulario grandiflorae-Sambucetum nigrae ass. nova; rels 13–16: Rubo vigoi-Sambucetum nigrae V. Silva & Pinto-Cruz 2012.

Table 4.

Relevés of Scrophulario grandiflorae-Sambucetum nigrae ass. nova hoc loco.

Nº of relevé 1 2 3* Presence
Altitude (m) 510 560 670
Area (m²) 80 80 100
Slope (%) 15 20 30
Cover (%) 90 90 85
Exposition N NE N
Average height (m) 2.5 3 2.5
Nº of taxa 15 17 19
Characteristics
Sambucus nigra L. 4 5 5 V
Rubus ulmifolius Schott 2 1 1 V
Urtica dioica L. 1 + 2 V
Scrophularia grandiflora DC. + 1 + V
Alliaria petiolata (M. Bieb.) Cavara & Grande . + 2 IV
Tamus communis L. . + 1 IV
Lonicera hispanica (Boiss.& Reut.) Nyman . + + IV
Crataegus monogyna Jacq. + . . II
Companions
Chelidonium majus L. 1 2 1 V
Polystichum setiferum (Forssk.) Woynar + 2 1 V
Digitalis purpurea L. 1 + + V
Hypericum androsaemum L. 1 + 1 V
Geranium purpureum Vill. + + + V
Quercus broteroana O. Schwartz + + + V
Ulmus minor Mill. . + 2 IV
Primula acaulis (L.) L. . + 1 IV
Pteridium aquilinum (L.) Kuntz + + . IV
Salix salviifolia Brot. + + . IV
Arum neglecti Mill. + . + IV
Ruscus aculeatus L. . + + IV
Prunus lusitanica L. . . 1 II
Table 5.

Summary table of associations dominated by Sambucus nigra. A) Scrophulario grandiflorae-Sambucetum nigrae ass. nova; B) Rubo vigoi-Sambucetum nigrae; C) Clematido vitalbae-Sambucetum nigrae.

A B C
Sambucus nigra L. V V V
Rubus ulmifolius Schott V V V
Scrophularia grandiflora DC. V . .
Urtica dioica L. V . .
Tamus communis L. IV . .
Alliaria petiolata (M. Bieb.) Cavara & Grande IV . .
Lonicera hispanica (Boiss.& Reut.) Nyman IV III .
Crataegus monogyna Jacq. II III .
Rubus vigoi Roselló, Peris & Stübing . V .
Clematis vitalba L. . . V
Cornus sanguinea L. . . II
Rubus caesius L. . . II
Solanum dulcamara L. . . I
Euonymus europaeus L. . . I
Rosa canina L. . . I
Bryonia dioica Jacq. . . I

Synchorology : This syntaxon has a reduced distribution area due to anthropic action over the last decades, which is why only three phytosociological relevés could be carried out. This syntaxon occurs in the mountains of central Portugal, corresponding in biogeographic terms to the Montemuro and Estrela Sierras Sector, having its ecological optimum in Mata da Margaraça-Serra do Açor.

Syndynamics and catenal contacts : The Sambucus nigra community occurs in conditions very similar to the position of Ulmus glabra Huds., and may represent the first stage of this forest's replacement that is currently very altered. In the study area, it was observed in the most hygrophilous variants of the edges of the new potential oak groves of Quercus broteroana here proposed (Genisto falcatae-Querco broteroanae), also integrating the boundary of the ammias of Scrophulario scorodonae-Alno glutinosae sigmetum.

Pruno lusitanicae-Coryletum avellanae ass. nova hoc loco

Synecology and Synstructure : In the mountains of central Portugal, a community of Corylus avellana was identified accompanied by a set of plants distinct from the only association previously mentioned for Portugal (Costa et al. 2012). Omphaloto nitidae-Coryletum avellanae was described for embedded and shady valleys, on deep limestone soils with high humidity (cambisols). Its floristic composition is rich, with approximately an average of about 34 species per relevés, accompanied by several trees and hygrophilous taxa. It occurs between 600 and 900 m a.s.l., in territoies with high precipitation (> 1,400 mm per year), and may occasionally descend to areas of humid shoulder type (Amigo et al. 1994). Although the floristic composition of Omphaloto nitidae-Coryletum avellanae is similar to the communities found in Serra da Estrela and Açor, it is worth mentioning the enrichment of mediterranean elements in the new association, such as Fraxinus angustifolia Vahl, Viburnum tinus and Arbutus unedo. Although Honrado (2003) proposed the subassociation lauretosum nobilis for the Peneda-Gerês and Monteiro-Henriques (2010) mountains for the Paiva river basin, the substrate and the floristic composition allowed us to separate the relevés carried out in the mountains of central Portugal. In this new association, taxa such as Acer pseudoplatanus L., Fraxinus excelsior L., Daphne laureola L., Carex sylvatica Huds., Hedera helix L., Oxalis acetosella L. and Helleborus viridis subsp. occidentalis (Reut.) Schiffn. are absent (Figure 3; Table 6). The presence of Hedera hibernica Bean, Quercus broteroana, Viburnum tinus, Lonicera periclymenum subsp. hispanica, Prunus lusitanica, Ulmus glabra, Arbutus unedo and Fraxinus angustifolia helped this new association's identification. Pruno lusitanicae-Coryletum avellanae ass. nova hoc loco is a siliceous association that occupies a tempori-hygrophilous position and develops in limit with a meso to supratemperate humid to hyper-humid semi-hyperoceanic (Holotypus associationis hoc loco: Table 7, relevé 3).

Table 6.

Summary table of associations dominated by Corylus avellana. A) Linario triorniphophylae-Coryletum avellanae; B) Laserpitio eliasii-Coryletum avellanae; C) Chamaeiris foetidissimo-Coryletum avellanae; D) Omphalodo nitidae-Coryletum avellanae; E) Pruno lusitanicae-Coryletum avellanae ass. nova.

A B C D E A B C D E
Corylus avellana L. V V V V V Ribes alpinum L. . III . . .
Sorbus aucuparia L. V . . II . Chamaeiris foetidissimus L. . . V . .
Quercus petraea (Matt.), Liebl. V . . II . Fraxinus angustifolia Vahl . . V . .
Stellaria holostea L. V V . . . Narcissus portensis Pugsley . . V . .
Linaria triornithophora (L.) Willd. V . . . . Ranunculus ficaria L. . . IV . .
Vaccinium myrtillus L. IV . . . . Vitis sylvestris (C.C. Gmel.) Hegi . . III . .
Melampyrum pratense L. IV III . . . Carex pendula Huds. . . III . .
Sorbus aira (L.) Crantz IV III . . . Salix atrocinerea Brot. . . III II .
Teucrium scorodonia L. IV . . . . Fraxinus excelsior L. . . . V .
Crepis lampsanoides (Gouan) Tausch IV V . . . Ulmus glabra Huds. . . . IV .
Poa nemoralis L. IV III . . . Ilex aquifolium L. . . . IV V
Dryopteris filix-mas (L.) Schott IV III . . . Castanea sativa Mill. . . . IV .
Hepatica nobilis Schreb. . V . . . Fagus sylvatica L. . . . IV .
Crataegus monogyna Jacq. . V . . . Acer pseudoplatanus L. . . . III .
Mercurialis perennis L. . V . . . Quercus broteroana O. Schwartz . . . IV IV
Melica uniflora Retz . V . . . Prunus avium L. . . . III .
Laserpitium eliasii Sennen & Pau . V . . . Acer campestre L. . . . II .
Milium effusum L. . V . . . Tilia platyphyllos Scop. . . . II .
Primula columnae (Ten.) Maire & Petitm. . V . . . Tilia cordata Mill. . . . II .
Sanicula europaea L. . V . . II Salix caprea L. . . . I .
Helleborus occidentalis (Reut.) Schiffn. . V . . . Crataegus laevigata (DC.) Baranec . . . I .
Rosa canina L. . V . . . Quercus pyrenaica Willd. . . . I .
Viola reichenbachiana Jord. ex Boreau . V . . . Hedera hibernica Bean . . . . V
Polystichum aculeatum (L.) Roth . V . . .
Ranunculus nemorosus DC. . IV . . . Blechnum spicant L. . . . . IV
Daphne laureola L. . IV . . . Viola riviniana Rchb. . . . . IV
Lilium martagon L. . IV . . II Primula acaulis (L.) L. . . . . IV
Amelanchier ovalis Medik. . III . . . Holcus mollis L. . . . . II
Pimpinella major (L.) Huds. . III . . . Aquilegia vulgaris L. . . . . II
Viburnum lantana L. . III . . . Luzula forsteri (Sm.) DC. . . . . II
Figure 3. 

Dendrogram of Corylus avellana communities. Rels 1–14: Omphaloto nitidae-Coryletum avellanae Amigo, G. Azcárate & Romero 1994; rels 15–17: Pruno lusitanicae-Coryletum avellanae ass. nova; rel. 18–25: Chamaeiris foetidissimo-Coryletum avellanae Nicolau & Sánchez-Mata 2015; rels 26–32: Laserpitio eliasii-Coryletum avellanae Puente, M.J. López, Penas & F. Salegui 2002; rels 33–36: Linario triorniphophylae-Coryletum avellanae R. Alonso, Puente, Penas & F. Salegui 2002.

Table 7.

Relevés of Pruno lusitanicae-Coryletum avellanae ass. nova hoc loco.

Nº of relevé 1 2 3* Presence
Altitude (m) 720 820 630
Area (m²) 80 70 70
Exposition N NE N
Slope (%) 30 40 15
Average height (m) 7 7 7
Cover (%) 85 80 95
Nº of taxa 17 18 31
Characteristics
Corylus avellana L. 3 4 4 V
Ilex aquifolium L. 2 1 1 V
Viola riviniana Rchb. + . + IV
Primula acaulis (L.) L. . + + IV
Lilium martagon L. . . + II
Aquilegia vulgaris L. . . + II
Sanicula europaea L. . . + II
Diferentials
Hedera hibernica Bean 3 1 2 V
Quercus broteroana O. Schwartz 1 . 1 IV
Blechnum spicant L. . + 1 IV
Holcus mollis L. . + . II
Luzula forsteri (Sm.) DC. . . + II
Companions
Rubus ulmifolius Schott 1 + 1 V
Polystichum setiferum (Forssk.) Woynar + + 1 V
Viburnum tinus L. + + + V
Castanea sativa Mill. 1 . 1 IV
Sambucus nigra L. 1 . + IV
Lonicera hispanica (Boiss.& Reut.) Nyman + . 1 IV
Prunus lusitanica L. . 1 + IV
Arbutus unedo L. . 1 + IV
Ulmus glabra Huds. . + 1 IV
Fraxinus angustifolia Vahl + + . IV
Hypericum androsemum L. + . + IV
Pteridium aquilinum (L.) Kuntz + . + IV
Ruscus aculeatus L. . + + IV
Asplenium onopetris L. . + + IV
Brachypodium sylvaticum (Huds.) P. Beauv. . + + IV
Quercus pyrenaica Willd. . 1 . II

Both ecologically and floristically, this new association is very close to the azereiro communities of Frangulo alni-Prunetum lusitanicae, similarly to what happens in the north of the Iberian Peninsula (Bolòs 1956; Lara et al. 2007; Raposo et al. 2021). However, their biotopes are distinguished by greater need for water, need for shade and greater cold resistance of hazel trees. On the other hand, these communities must be considered relicts, once they are hardly recoverable after being destroyed. The few known spontaneous hazel nuclei are found in limit that are physiographically protected from fires, such as embedded valleys or rocky slopes.

Synchorology : The new association develops in the Montemuro and Estrela Sierras Sector, with its main population centres in the Municipality of Seia (Portugal). These hazel trees correspond to the southern limit of associations dominated by Corylus avellana for mainland Portugal.

Syndynamics and catenal contacts : In dynamic terms, this syntaxon represents the first stage of replacement or forest edge of the oak-alvarinho communities of Genisto falcatae-Querco broteroanae sigmetum and of riparian galleries of white borrazeira riparian galleries of Salico salviifoliae minorisigmetum. The tree cover's destruction promotes the appearance of a thicket of the association Lonicero hispanicae-Rubetum ulmifoliae. Catenally, it comes into contact with the temporary-hygrophilous Portuguese-laurel of the association Frangulo alni-Prunetum lusitanicae and with the alders of Galio broteriani-Alno glutinosae sigmetum.

Genisto falcatae-Quercetum broteroanae ass. nova hoc loco

Synecology and Synstructure : Oak groves of Quercus broteroana from central Portugal were initially described as a subassociation of Rusco aculeati-Quercetum roboris, belonging to viburnetosum tini (Braun-Blanquet et al. 1956). However, the geographical and floristic differences allowed this subassociation to be raised to the Viburno tini-Quercetum broteroanae (Costa et al. 2012). It has been described as a thermotemperate (submediterranean) humid hyperoceanic syntaxon, occurring up to 500 m altitude (Rivas-Martínez et al. 2002). However, the oak groves that occur in the upper accounts have an original floristic composition, enriched with plants such as Genista falcata, Quercus pyrenaica, Eryngium juresianum (Laínz) Laínz, Prunus lusitanica and Veronica micrantha Hoffmann. & Link. Thus, based on 11 phytosociological relevés, we propose Genisto falcatae-Quercetum broteroanae ass. nova hoc loco (Holotypus associationis hoc loco: Table 8, relevé 3) for mesotemperate territories, occasionally reaching the supratemperate (submediterranean) humid to hyperhumid, semihyperoceanic, occurring from 500 to 800 meters in altitude, more thermal slopes at an altitude of 1,000 meters, on acid substrates formed by greywacke, schist or granite. In view of the anthropic action, the best oak groves are found on north facing slopes. As a southern series of Quercus broteroana, influenced by the submediterranean subtype, the presence of elements of Quercetea ilicis is frequent.

Of all the associations of Quercus robur, the one that most closely resembles it is the Viburno tini-Quercetum broteroanae by the absence of thermal elements, such as Smilax aspera and Asparagus aphyllus L., and the presence of Prunus lusitanica in climatophilous position, Genista falcata and Quercus pyrenaica (Table 9). Though having some plants in common, the remaining associations, have their own taxa that allow them to be distinguished at the floristic level (Figure 4).

Figure 4. 

Dendrogram of Quercus robur s.l. communities. Rels 1–4: Vaccinio myrtilli-Quercetum roboris P. Silva, Rozeira & Fontes 1950 corr. Br.-Bl., P. Silva & Rozeira 1955; rels 5–9: Rusco aculeati-Quercetum roboris Br.-Bl., P. Silva & Rozeira 1955 em. Amigo, Izco, J. Guitián & Romero 1998; rels 10–20: Genisto falcatae-Quercetum broteroanae ass. nova; rels 21–31: Hyperico androsaemi-Quercetum roboris Honrado, Rocha, P. Alves & B. Caldas in Honrado, P. Alves, Nepomuceno & B. Caldas 2022; rels 32–39: Viburno tini-Quercetum broteroanae (Br.- Bl., P. Silva & Rozeira 1955) J.C. Costa, Capelo, Honrado, Aguiar & Lousã 2002.

Table 8.

Relevé of subassociations of Genisto falcatae-Quercetum broteroanae subass. typicum (rels 1–8); Genisto falcatae-Quercetum broteroanae subass. asphodeletosum bento-rainhae (rels 9–11).

N.º relevé 1 2 3* 4 5 6 7 8 9 10 11+ Presence
Altitude (m) 500 700 480 760 760 690 580 475 620 690 570
Slope (%) 25 30 15 50 25 12 30 40 15 20 10
Exposure N W N S W NW N W N NE NW
Coverage (%) 95 100 100 100 95 85 100 100 90 100 100
N.º of taxa 18 21 23 24 26 28 33 34 17 21 29
Characteristics
Quercus broteroana O. Schwartz 4 5 3 5 4 3 4 4 4 4 5 V
Teucrium scorodonia L. . 2 + 2 . + + 1 1 1 1 V
Hedera hibernica Bean 1 3 1 2 + . 2 2 + . 3 V
Genista falcata Brot. . . + . 1 . + 2 + + + V
Quercus pyrenaica Willd. . . + 1 . 1 . 1 2 3 2 IV
Viola riviniana Rchb. . . 1 . . + + + + + . IV
Luzula forsteri (Sm.) DC. . . + . 1 1 + 1 . . . III
Ilex aquifolium L. . . + . . + 2 . . . + III
Prunus lusitanica L. . . 1 . . + 2 . . . . II
Omphalodes nitida (Willd.) Hoffmanns. & Link + + . . . . . + . . . II
Blechnum spicant L. . . + . . + + . . . . II
Holcus mollis L. . 2 . 3 . . . . . . . I
Stellaria holostea L. . 1 . 1 . . . . . . . I
Crepis lampsanoides (Gouan) Tausch . . . + . . . 1 . . . I
Primula acaulis (L.) L. . . + . + . . . . . . I
Eryngium juresianum (Laínz) Laínz . . + . . . + . . . . I
Arenaria montana L. . . + . . . . + . . . I
Polygonatum odoratum (Miller) Druce . . . . . . . . . + + I
Physospermum cornubiense (L.) DC. . . . . . . . . . . 1 I
Euphorbia amygdaloides L. + . . . . . . . . . . I
Lilium martagon L. . . . . . . + . . . . I
Veronica micrantha Hoffmann. & Link . . . . . . + . . . . I
Prunus avium L. . . . . . . . + . . . I
Cephalanthera longifolia (L.) Fritsch . . . . . . . + . . . I
Characteristics asphodeletosum
Asphodelus bento-rainhae P. Silva . . . . . . . . + + + II
Companions
Pteridium aquilinum (L.) Kuntz 1 2 + 2 1 1 + 2 + 2 1 V
Castanea sativa Mill. + . 2 2 1 1 1 2 2 1 2 V
Lonicera hispanica (Boiss.& Reut.) Nyman 1 3 + . 1 1 1 + . . 2 V
Ruscus aculeatus L. + 4 . . + 1 1 1 . + 1 V
Arbutus unedo L. . . 1 . 1 + + . 2 2 1 IV
Erica arborea L. + . + . + 1 . 1 . + + IV
Cytisus striatus (Hill) Rothm. . . . + + + + + . + . IV
Rubus ulmifolius Schott 1 . . + + 1 . . . . + III
Crataegus monogyna Jacq. 2 . + . . + . . + . + III
Calluna vulgaris (L.) Hull. . . . . + 1 + . . + + III
Frangula alnus Mill. + + + + . + + . . . . III
Tamus communis L. + + . . . . . + + + . III
Rubia peregrina L. . . . . . + + . . 1 1 III
Viburnum tinus L. . . 1 . + + 1 . . . . III
Digitalis purpurea L. + + . + . . . + . . . III
Lithodora lusitanica (Samp.) Holub. . . . . . . . . 1 1 + III
Asplenium onopteris L. + + . . . . . 1 . . . III
Agrostis stolonifera L. + . . 1 . . . + . . . III
Cytisus grandiflorus (Brot.) DC. . 1 . . . . . . + . + II
Asplenium onopeteris L. . . 1 . . + + . . . . II
Holcus lanatus L. . . . . + 1 + . . . . II
Agrostis curtisii Kerguélen . . . . + . . . . 1 + II
Laurus nobilis L. + . . . . + + . . . . II
Polystichum setiferum (Forssk.) Woynar . . + . + + . . . . . II
Fragaria vesca L. . . + . + + . . . . . II
Linaria triornitpphylla (L.) Willd. . . . . + . + . . . + II
Pterospartum lasianthum (Spach) Willk . . . . + + . . . . + II
Clinopodium arundanum (Boiss.) Nyman . . . 1 . . . 1 . . . I
Rubus sp. . 2 . + . . . . . . . I
Pinus pinaster Aiton . . . . . . . . . 1 + I
Cytisus multiflorus (L’Hér.) Sweet . + . + . . . . . . . I
Ceratocapnos claviculata (L.) Lidén . + . + . . . . . . . I
Polypodium interjectum Shivas . + . . . . . + . . . I
Dactylis hispanica Roth . . . + . . . + . . . I
Jasione montana L. . . . + . . . + . . . I
Silene nutans L. . . . + . . . . . + . I
Hypericum androsaemum L. . . . . . + + . . . . I
Quercus suber L. . . . . . . . . . + + I
Table 9.

Summary table of associations dominated by Quercus robur s.l. in mainland Portugal. A) Vaccinio myrtilli-Quercetum roboris; B) Rusco aculeati-Quercetum roboris; C) Genisto falcatae-Quercetum broteroanae ass. nova; D) Hyperico androsaemi-Quercetum roboris; E) Viburno tini-Quercetum broteroanae.

A B C D E A B C D E
Quercus robur s.l. V V V V V Veronica montana L. . . . + .
Vaccinium myrtillus L. V . . . . Smilax aspera L. . . . . IV
Rubus lusitanicus R.P.Murray V . . . . Luzula baetica P. Monts. . . . . IV
Galium rotundifolium L. V . . . . Vinca difformis Pourr. . . . . IV
Laserpitium thalictrifolium Samp. IV . . . . Asparagus aphyllus L. . . . . III
Melittis melissophyllum L. IV . . . . Phillyrea latifolia L. . . . . III
Prunella grandiflora (L.) Scholler IV . . . . Other plants
Picris longifolia (Boiss. & Reuter) P.D. Sell II . . . . Teucrium scorodonia L. V V V . V
Aquilegia dichroa Freyn . I . . . Lonicera periclymenum L. V V + . V
Scilla verna Huds. . I . . . Polygonatum odoratum (Miller) Druce V II I . .
Veronica chamaedrys L. . I . . . Hypericum pulchrum L. V III . . .
Hieracium sabaudum L. . I . . . Lilium martagon L. V . + . .
Melampyrum pratense L. . I . . . Ilex aquifolium L. IV II II . IV
Lonicera hispanica (Boiss.& Reut.) Nyman . . IV . . Quercus pyrenaica Willd. IV II IV . .
Luzula forsteri (Sm.) DC. . . IV . . Physospermum cornubiense (L.) DC. IV II + . .
Primula acaulis L. . . II . . Pyrus cordata Desv. IV II . . .
Blechnum spicant L. . . II . . Anemone trifolia L. IV I . . .
Asphodelus bento-rainhae P. Silva . . II . . Eryngium juresianum (Laínz) Laínz IV . II . .
Prunus lusitanica L. . . II . . Viola riviniana Rchb. III V III . IV
Crataegus monogyna Jacq. . . II . . Satureja vulgaris (L.) Halácsy III III . . .
Veronica micrantha Hoffmann. & Link . . I . . Crepis lampsanoides (Gouan) Tausch III II I . .
Prunus avium L. . . + . . Arenaria montana L. III II I . .
Cephalanthera longifolia (L.) Fritsch . . + . . Euphorbia amygdaloides L. II II + . .
Polystichum setiferum (Forssk.) Woynar . . . V . Omphalodes nitida Hoffmanns. & Link II I II . .
Acer pseudoplatanus L. . . . V . Euphorbia dulcis L. II I . . .
Hedera canariensis Willd. . . . V . Castanea sativa Willd. . III V . .
Fraxinus angustifolia L. . . . IV . Holcus mollis L. . II I . IV
Salix atrocinerea Brot. . . . III . Genista falcata Brot. . II IV . .
Osmunda regalis L. . . . III . Stellaria holostea L. . II I . .
Woodwardia radicans (L.) Sm. . . . III . Hedera hibernica Bean . . V . V
Alnus glutinosa (L.) Gaertn. . . . II . Ruscus aculeatus L. . . III IV V
Helleborus foetidus L. . . . II . Arbutus unedo L. . . III . V
Lysimachia nemorum L. . . . II . Tamus communis L. . . II . IV
Phyllitis scolopendrium (L.) Newman . . . I . Laurus nobilis L. . . I V .
Sanicula europaea L. . . . I . Asplenium onopteris L. . . I IV .
Anthriscus sylvestris (L.) Hoffm. . . . + . Viburnum tinus L. . . I . V
Carex remota L. . . . + . Rubia peregrina L. . . + . V
Mercurialis perennis L. . . . + . Corylus avellana L. . . + IV .
Thalictrum speciosissimum L. . . . + . Hypericum androsaemum L. . . + III .

For Serra da Gardunha we point out the subassociation asphodeletosum bento-rainhae (Holotypus associationis hoc loco: Table 8, relevé 11), marked by the presence of Asphodelus bento-rainhae P. Silva and also by the strong presence of Quercus pyrenaica. This subassociation marks the southeast limit of this series distribution area of potentially climatophilous vegetation. As this is an ecological limit, the oak groves in this territory have low ecological resilience, being found only on the north facing slopes. A good part of Serra da Gardunha has been transformed into Castanea sativa forests, so the oak groves are generally poorly preserved.

Synchorology : Both subassociations have their ecological optimum in the new Alvo-Gardunhense District (Montemuro and Estrela Sierras Sector Montemuro-Estrelense, Atlantic Orolusitania Subprovince, European Atlantic Province). The typus association occurs in Serra da Estrela, Açor and Lousã, while asphodeletosum bento-rainhae occurs from the northern slope of Serra da Gardunha to Sertã. The Genisto falcatae-Quercetum broteroanae ass. nova distribution area corresponds to the southern limit of the Atlantic European Province.

Syndynamics and catenal contacts : The forests of Genisto falcatae-Quercetum broteroanae represent the climatic stage (Figure 5). The first replacement stage is formed by the azereira of Frangulo alni-Prunetum lusitanicae or by the avenal of Pruno lusitanicae-Coryletum avellanae ass. nova, which differs from the azereira grove due to the greater water requirement, need for shade and greater resistance to cold of Corylus avellana, although in this territory both associations have a relict character. However, Pruno lusitanicae-Arbutetum unedonis is more common and grows in less humid areas. On the edges of the forest and as a second replacement stage, a gyestal of Cytisetum grandifloro-striati ass. nova. Still on the forest edges, there is sometimes a herbaceous community of Omphalodo nitidae-Linarietum triornithophorae. In addition, on deep soils there are the perennial meadows of Avenella flexuosa (L.) Parl., which are currently quite altered, preventing the proper relevés performance. In clearings, slopes and roadsides there is a meadow dominated by Brachypodium phoenicoides (L.) Roem. & Schult., maintained through shrub vegetation grazing or cutting. With soil erosion, the heath and gorse of Erico umbellatae-Pterospartetum tridentati appear and with the decapitation of the soil, the association Pterosparto lasianthi-Ericetum cinereae appears. The last replacement stage is formed by a therophytic meadow of Galio parisiensis-Logfietum minimae. In catenal terms, they come into contact at lower levels with oak groves of Viburno tini-Quercetum broteroanae and at higher levels with the oak woods of Holco mollis-Quercetum pyrenaicae. At the valley´s bottom, it comes into contact with the edapho-hygrophilous series of the alder of Scrophulario scorodoniae-Alno glutinosae sigmetum and with the ash trees of Omphalodo nitidae-Fraxino angustifolae sigmetum.

Figure 5. 

Dynamics of Genisto falcatae-Quercetum broteroanae ass. nova.

Community of Brachypodium phoenicoides

Synecology and Synstructure : Lively meadow dominated by Brachypodium phoenicoides that develops in mesotemperate humid to hyper-humid semi-hyperoceanic to euoceanic on siliceous substrates derived from schists, quartzites, granites and sandstones. Therefore, it clearly differs from Galio concatenati-Brachypodietum phoenicoidis Pinto-Gomes & P. Ferreira 2005 and Phlomido lychnitidis-Brachypodietum phoenicoidis Br.-Bl., P. Silva & Rozeira 1955 because it grows on calcareous substrates, where plants such as Galium concatenatum Coss., Centaurea occasus Fern.Casas, Salvia sclareoides Brot., Teucrium chamaedrys L. and Phlomis lychnitis L. are absent.

This new community occurs mainly on recently abandoned paths, sparsely grazed areas or scrub clearings. Although it occurs on acidic substrates, it differs from Hyacinthoido transtaganae-Brachypodietum phoenicoidis, which occurs in sandy substrates in a tempori-hygrophilous position in the lower Tagus and Sado basins, consisting of plants such as Festuca ampla subsp. simplex (Pérez Lara) Devesa, Hyacinthoides vicentina subsp. transtagana Franco & Rocha Afonso, Avenula sulcata subsp. gaditana Romero Zarco, Serratula monardii Dufour and Lepidophorum rapandum (L.) DC. (Raposo et al. 2016) and of Festuco amplae-Brachypodietum phoenicoides that occurs in a temporary-hygrophilous position in the Luso-Extremadurense Sector, presenting as main characteristic plants Festuca ampla, Scirpoides holoschoenus and Crepis capillaris (Ribeiro et al. 2013).

Therefore, this silicic community is accompanied by plants such as Dactylis glomerata subsp. lusitanica (Stebbins & Zohary) Rivas-Mart. & Izco, Ranunculus bupleuroides Brot., Narcissus triandrus subsp. pallidulus (Graells) Rivas Goday ex Fern. Casas, Arenaria montana L. and Hypericum linariifolium Vahl. However, deeper studies are needed to interpret the syntaxonomic position of this plant community.

Synchorology : This community occurs in the Lousã, Açor and Estrela mountains, corresponding in biogeographic terms to the Sierran Montemuro-Estrelense Sector.

Syndynamics and catenal contacts : This lively lawn is part of the stage of replacement of the oak-alvarinho forests of Genisto falcatae-Querco broteroanae sigmetum. In catenal terms, it is in contact with the Cytisetea scopario-striati scrub and the Calluno-Ulicetea scrub.

Community of Ulmus glabra

Synecology and Synstructure : Mesophilous and tempori-hygrophilous communities that develop on deep soils and cool slopes, with a preference for sheltered areas. Due to this specie´s reduction, derived from the elm graphiosis (Ophiostoma ulmi and Ophiostoma novo-ulmi) pest in recent decades, there are few representative areas of this species, which is why there are no dense or well-preserved forests (Monteiro-Henriques et al., 2010). Possibly, the elm trees in the study area correspond to Fraxino angustifoliae-Ulmetum glabrae. Frequent plants: Ulmus glabra, Quercus broteroana, Prunus lusitanica, Sambucus nigra, Rubus ulmifolius, Frangula alnus, Corylus avellana, Crataegus monogyna, Hedera hibernica, Lonicera hispanica, Polystichum setiferum, Blechnum spicant, Hypericum androsaemum, Ilex aquifolium, Tamus communis, Urtica dioica, Chelidonium majus, Luzula henriquesii and Primula acaulis.

Synchorology : In the study area, one of the best places to observe this species is Mata da Margaraça, but it has also been observed along streams, namely in Vale de Loriga, Lapa dos Dinheiro (Seia), Cascata da Forja (Vide) and near Donas (North slope of Serra da Gardunha). Thus, we think that the presence of Ulmus glabra can help define the Alvo-Gardunhense District boundaries.

Syndynamics and catenal contacts : The communities of Ulmus glabra are in contact catenally with the climatophilous oaks of Genisto falcatae-Quercetum broteroanae and with the edaphohygrophilous amylias of Scrophulario scorodoniae-Alnetum glutinosae. As the main replacement step, we identified a community of Sambucus nigra from Scrophulario grandiflorae-Sambucetum nigrae ass. nova.

Community of Betula celtiberica

Synecology and Synstructure : Although not very representative, some forest fragments of Betula celtiberica were identified in the study area. From an ecological point of view, the Betula forests form secondary communities that descend at 450 meters. Although their presence is residual, they are of great interest due to the coexistence with characteristic plants of Quercetea ilicis, namely, Viburnum tinus, Ruscus aculeatus, Erica arborea, Rubia peregrina and Phillyrea angustifolia L., which could represent a new syntaxon. This occurs in the semihyperoceanic to euoceanic hyperhumid mesotemperate level. Due to the low expression it was not possible to carry out phytosociological relevés. Frequent plants: Betula celtiberica, Quercus broteroana, Prunus lusitanica, Ilex aquifolium, Viburnum tinus, Frangula alnus, Dryopteris affinis, Viola riviniana, Pteridium aquilinum, Hedera hibernica, Rubus ulmifolius, Castanea sativa, Rubia peregrina, Ulex minor, Brachypodium sylvaticum, Teucrium scorodonia, Polystichum setiferum, Avenella flexuosa, Genista falcata, Crataegus monogyna, Daphne gnidium and Prunus avium.

They differ from the Geresian association of Carici reuterianae-Betuletum celtibericae by the presence of a set of lauroid elements, as well as taxa belonging to Quercetea ilicis. Carici reuterianae-Betuletum celtibericae has a hygro­philous character and occurs in upper mesotemperate and supratemperate thermotypes, affiliated with Osmundo regalis-Alnion glutinosae, where taxa as Athyrium filix-femina (L.) Roth, Salix atrocinerea, Oenanthe crocata L., Osmunda regalis L. occur with a high degree of coverage (Honrado et al. 2003).

This birchwood is geographically close to the association Saxifrago spathularidis-Betuletum celtibericae, however, they are differentiated through the thermotype, normally occurring above 1,000 meters, in the above supra to orotemperate thermotypes of the Estrela and Oresano-Sanabriense territories, as well as by the absence taxa of lauroid, Quercetea ilicis and Saxifraga spathularis (L.) Link, Taxus baccata L., Sorbus aucuparia L., Festuca elegans Boiss. and Cytisus oromediterraneus Rivas-Mart., T.E. Díaz, Fern., Prieto, Loidi & Penas.

Synchorology : These relict communities occur in the low altitudes of the Estrela and Açor mountains, corresponding to the southern limit of the Betula celtiberica's natural distribution area in mainland Portugal. In biogeographic terms, they help to define the Alvo-Gardunhense District.

Syndynamics and catenal contacts : Betula communities occupy a secondary position in the potential forests of Genisto falcatae-Querco broteroanae sigmetum. In catenal terms, it contacts the amyal of Scrophulario scorodoniae-Alno glutinosae sigmetum.

Biogeographic proposal for the study area

The improvement knowledge of the syntaxa's range has made it possible to identify a new territorial domain with its own identity and to distinguish it from surrounding biogeographic territories. Within the Montemuro and Estrela Sierras Sector, depending on the orientation of the slopes, the vegetation change occurs, on average, between 900 and 1,000 m a.s.l. This altitude is close to the work by Costa et al. (1998), when he refers to the Montemuro and Estrela Sierras Sector's altitudinal limit. The altitudinal limit of the Alvo-Gardunhense District can reach a minimum level of 400 m a.s.l., especially on coasts exposed to the north quadrant. Other works published on the biogeography of Serra da Estrela also followed the series of natural potential vegetation (Rivas-Martínez et al. 2017). However, the new Alvo-Gardunhense District now corresponds to the southernmost part of the former Estrela Sierran District (Rivas-Martínez et al. 2017). Below this altitude the natural potential vegetation is formed by the humid to hyper-humid meso to supratempered alvarinho oak series of Genisto falcatae-Querco broteroanae sigmetum, which is represented by the Alvo-Gardunhense District (Figure 6). Thus, it is a District influenced by the submediterranean variant, mesotemperate humid to hyper-humid.

Figure 6. 

Proposal for the limits of the new Biogeographic District: Alvo-Gardunhense (Montemuro and Estrela Sierras Sector, Atlantic Orolusitania Subprovince, Atlantic European Province). F.a.-P.l., Frangulo alni-Prunetum lusitanicae; G.f.-Q.b., Genisto falcatae-Quercetum broteroanae; P.l.-C.a., Pruno lusitanicae-Coryletum avellanae; S.g.-S.n., Scrophulario grandiflorae-Sambucetum nigrae ass. nova.

At elevations above 1,000 meters, the natural potential vegetation is represented by the series of black oak from Holco mollis-Querco pyrenaicae sigmetum, corresponding to the Estrelense District. This District is influenced by the submediterranean variant, supra to orotemperate hyper-humid to ultra-hyper-humid. In order to differentiate and consequente definition of the adjacent sectors' biogeographic boundaries, the potential climatophilous vegetation corresponding to each territory is presented in Table 10.

Table 10.

Main series of potential vegetation that allow to distinguish the different biogeographical sectors.

Biogeographical units Divisorio Portuguese Sector Montemuro and Estrela Sierras Sector Oretana Range and Tajo Sector
Edafoxerophilous Lonicero implexae-Querco rotundifoliae S. Teucrio salviastri-Querco rotundifoliae S. Teucrio salviastri-Querco suberis S. Pyro bourgaeanae-Querco rotundifoliae S.
Asparago aphylli-Querco suberis S. Holco mollis-Querco pyrenaicae S.
Climatophilous Arisaro simorrhini-Querco broteroi S. Genisto falcatae-Querco broteroanae S. Smilaco asperae-Querco suberis S. Arisaro simorrhini-Querco pyrenaicae S.
Arisaro simorrhini-Querco pyrenaicae S.
Viburno tini-Querco broteroanae S.
Edafohygrophilous Ficario ranunculoidis-Fraxino angustifoliae S. Salico salviifoliae S. Salico salviifoliae S.
Scrophulario scorodoniae-Alno glutinosae S. Scrophulario scorodoniae-Alno glutinosae S.

Based on the ecological fidelity of plants and plant communities, it was possible to improve the Atlantic European Province´s southern limits definition in mainland Portugal, which now corresponds to the Alvo-Gardunhense District. The potential climatophilous forests that best define this District are Genisto falcatae-Quercetum broteroanae subass. typicum and subass. asphodeletosum bento-rainhae. These territories, mostly mesotemperate, are thus separated from the Estrelense District characterized by the supra and orotemperate thermotypes, where Quercus broteroana communities are absent. However, it is necessary to conduct more studies in order to understand the real distribution of the Viburno tini-Quercetum broteroanae, since the thermotempered territories are outside the European Atlantic Province and belong to the Portuguese Divisive Sector.

In order to help characterize this new Biogeographic District, the main stages of replacement of the series of potential climatophilous vegetation were identified, some of which were new to the scientific community. Although other syntaxa may help this biogeographic territory´s definition, the humanization of the landscape and climate change may contribute to its limits's redution, due to the tendency of future lower precipitation. Therefore, Genisto falcatae-Quercetum broteroanae ass. nova must be considered a relict vegetation series that needs urgent special conservation measures.

Syntaxonomical scheme

CYTISETEA SCOPARIO-STRIATI Rivas-Martínez 1974

Cytisetalia scopario-striati Rivas-Martínez 1974

Ulici europaei-Cytision striati Rivas-Martínez, Báscones, Díaz, Fernandez-González & Loidi 1991

Cytisetum grandifloro-striati ass. nova

RHAMNO CATHARTICAE-PRUNETEA SPINOSAE Rivas Goday & Borja ex Tüxen 1962

Prunetalia spinosae Tüxen 1952

Pruno spinosae-Rubion ulmifolii O. Bolòs 1954

Rosenion carioti-pouzinii Arnáiz ex Loidi 1989

Scrophulario grandiflorae-Sambucetum nigrae ass. nova

QUERCO-FAGETEA SYLVATICAE Br.-Bl. & Vlieger in Vlieger in Ned. Kruidk 1937

Betulo pendulae-Populetalia tremulae Rivas-Martínez & Costa 2002

Betulion fontqueri-celtibericae Rivas-Martínez & Costa 2002

Betulenion fontqueri-celtibericae Rivas-Martínez & Costa 2011

Pruno lusitanicae-Coryletum avellanae ass. nova

Quercetalia roboris Tüxen 1931

Quercion pyrenaicae Rivas-Goday ex Rivas-Martínez 1964

Quercenion robori-pyrenaicae (Br.-Bl., P. Silva & Rozeira 1955) Rivas-Martínez 1975

Genisto falcatae-Quercetum broteroanae ass. nova

Other syntaxa quoted in the text

Arisaro simorrhini-Quercetum broteroi Br.-Bl., P. Silva & Rozeira 1955 corr. Rivas-Martínez 1975; Arisaro simorrhini-Quercetum pyrenaicae Pinto-Gomes, P. Ferreira, Aguiar, Lousã, J.C. Costa, Ladero & Rivas-Martínez in Pinto- Gomes, P. Ferreira & Meireles 2007 corr. Pinto-Gomes & J.C. Costa 2012; Asparago aphylli-Quercetum suberis J.C. Costa, Capelo, Lousã & Espírito Santo 1996; Calluno vulgaris-Ulicetea minoris Br.-Bl. & Tüxen ex Klika & Hadač 1944; Carici reuterianae-Betuletum celtibericae (Honrado, P. Alves, Aguiar, Ortiz & B. Caldas 2003) Honrado 2004; Chamaeiris foetidissimo-Coryletum avellanae Nicolau & Sánchez-Mata 2015; Clematido vitalbae-Sambucetum nigrae O. Bolòs 1978; Erico umbellatae-Pterospartetum tridentati (Br.-Bl., P. Silva & Rozeira 1965) J.C. Costa, Honrado, Monteiro-Henriques & Aguiar 2008; Festuco amplae-Brachypodietum phoenicoidis S. Ribeiro, Ladero & Espírito-Santo 2013; Ficario ranunculoidis-Fraxinetum angustifoliae Rivas-Martínez & Costa in Rivas-Martínez, Costa, Castroviejo & E. Valdés 1980; Frangulo alni-Prunetum lusitanicae C. Lopes, J.C. Costa, Lousã & Capelo in J.C. Costa, C. Lopes, Capelo & Lousã 2000; Fraxino angustifoliae-Ulmetum glabrae Monteiro-Henriques, J.C. Costa & A. Bellu 2011; Galio concatenati-Brachypodietum phoenicoidis Pinto-Gomes & P. Ferreira 2005; Galio parisiensis-Logfietum minimae Izco & Ortiz 1985; Holco mollis-Quercetum pyrenaicae Br.-Bl., P. Silva & Rozeira 1955; Hyacinthoido transtaganae-Brachypodietum phoenicoidis Raposo, Mendes, Cano-Ortíz & Pinto-Gomes 2016; Hyperico androsaemi-Quercetum roboris Honrado, Rocha, P. Alves & B. Caldas in Honrado, P. Alves, Nepomuceno & B. Caldas 2002; Laserpitio eliasii-Coryletum avellanae Puente, M.J. López, Penas & F. Salegui 2002; Lavandulo viridis-Cytisetum striati Pinto-Gomes, Cano-Ortiz, Quinto-Canas, Vila-Viçosa & Martínez-Lombardo 2012; Linario triornithophorae-Coryletum avellanae R. Alonso, Puente, Penas & F. Salegui 2002; Lonicero hispanicae-Rubetum ulmifolii Rivas-Martínez, Costa, Castroviejo & Valdés 1980; Lonicero implexae-Quercetum rotundifoliae Lousã, Espírito Santo & J.C. Costa 1994; Omphalodo nitidae-Coryletum avellanae Amigo, G. Azcárate & Romero 1994; Omphalodo nitidae-Fraxinetum angustifoliae Monteiro-Henriques, J.C. Costa, A. Bellu, Aguiar & Portela Pereira 2012; Omphalodo nitidae-Linarietum triornithophorae Rivas-Martínez in Rivas-Martínez, T.E. Díaz, F. Prieto, Loidi & Penas 1984; Osmundo regalis-Alnion glutinosae (Br.-Bl., P. Silva & Rozeira 1956) Dierschke & Rivas-Martínez in Rivas-Martínez 1975; Phlomido lychnitidis-Brachypodietum phoenicoidis Br.-Bl., P. Silva & Rozeira 1955; Pruno lusitanicae-Arbutetum unedonis (Aguiar & Capelo 1995) J.C. Costa, Capelo & Lousã in J.C. Costa, C. Lopes, Capelo & Lousã 2000; Pterosparto lasianthi-Ericetum cinereae Rothmaler 1954 corr. Rivas-Martínez, T.E. Díaz, Fernández González, Izco, Loidi, Lousã & Penas 2002; Pyro bourgaeanae-Quercetum rotundifoliae Rivas-Martínez 1987; Quercetea ilicis Br.-Bl. ex A. & O. Bolòs 1950; Rubo vigoi-Sambucetum nigrae V. Silva & Pinto-Cruz in V. Silva, Portela-Pereira, J.C. Costa, Arsénio, Monteiro-Henriques, Neto & Pinto-Cruz 2012; Rusco aculeati-Quercetum roboris Br.-Bl., P. Silva & Rozeira 1955 in Amigo, Izco, J. Guitián & Romero 1998; Saxifrago spathularidis-Betuletum celtibericae Rivas-Martínez 1981; Scrophulario scorodoniae-Alnetum glutinosae Br.-Bl., P. Silva & Rozeira 1955; Smilaco asperae-Quercetum suberis Pinto-Gomes, Ladero, P. Gonçalves, S. Mendes & M.C. Lopes 2004; Teucrio salviastri-Quercetum rotundifoliae Pinto-Gomes, Ladero, Cano, Meireles, Aguiar & P. Ferreira 2010; Teucrio salviastri-Quercetum suberis C. Meireles, P. Ferreira, Passos, Vila-Viçosa & Pinto-Gomes in Pinto-Gomes, P. Ferreira & Meireles 2007; Ulici latebracteati-Cytisetum striati Rivas-Martínez ex J.C. Costa, Izco, Lousã, Aguiar & Capelo in J.C. Costa, Capelo, Lousã, Antunes, Aguiar, Izco & Ladero 2000; Vaccinio myrtilli-Quercetum roboris P. Silva, Rozeira & Fontes 1950 corr. Br.-Bl., P. Silva & Rozeira 1955; Viburno tini-Quercetum broteroanae (Br.- Bl., P. Silva & Rozeira 1955) J.C. Costa, Capelo, Honrado, Aguiar & Lousã 2002 corr. J.C. Costa & Monteiro-Henriques 2012.

Acknowledgments

The first results of this work were presented at the XIV INTERNATIONAL SEMINAR - BIODIVERSITY MANAGEMENT AND CONSERVATION on “Biodiversity and Sustainability: two important keywords for the future” which took place in Serra San Bruno (Vibo Valentia, Italy) from 6 to 11 June 2022, organized by the Mediterranean University of Reggio Calabria (Italy).

Bibliography

  • Amigo J, Gimenez DA carate, Romero MI maculada (1994) Omphalodo nitidae-Coryletum avellanae, a new mesophytic woodland community of the northwest Iberian Peninsula. Botanica Helvetica 104: 103–122.
  • Bolòs O de (1956) De vegetatione notulae, II. Collect Bot. V: 244–252.
  • Bolòs O de (1978) Observacions sobre vegetació de vora de bosc. Revista Catalana de Geografia 1: 415–420.
  • Braun-Blanquet J (1979) Fitosociología. Bases para el estudio de las comunidades vegetales., Ed. H. Blume. ed. Madrid.
  • Braun-Blanquet J, Silva P, Rozeira A, Fostes F (1956) Résultats de deux excursions géobotaniques à travers le Portugal septentrional et moyen. II. Chênaies à feuilles caduques (Quercion occidentale) et chênaies à feuilles persistantes (Quercion fagineae) au Portugal. Agron. Lusit. 18: 167–233.
  • Cano-Ortiz A, Fuentes JCP, Gea FL, Ighbareyeh JMH, Quinto Canas RJ, Meireles CIR et al. (2022) Climatology, Bioclimatology and Vegetation Cover: Tools to Mitigate Climate Change in Olive Groves. Agronomy 12: 2707. https://doi.org/10.3390/agronomy12112707
  • Castroviejo S (1986) Flora Iberica. Real Jardín Botánico, CSIC. ed. Madrid.
  • Costa JC, Aguiar C, Capelo J, Lousã M., Neto C (1998) . Biogeografia de Portugal Continental. Quercetea 0: 5–56. ISSN 0874-5250.
  • Costa JC, Espírito-Santo M, Arsénio P (2010) Guia geobotânico de excursão ao Parque Natural da Serra de Aire e Candeeiros. Quercetea 10: 107.
  • Costa JC, Monteiro-Henriques T, Bingre P., Espírito-Santo D (2015) Warm-Temperate Forests of Central Portugal: A Mosaic of Syntaxa, in: Box EO, Fujiwara K. (Eds), Warm-Temperate Deciduous Forests around the Northern Hemisphere, Geobotany Studies. Springer International Publishing, Cham: 97–117. https://doi.org/10.1007/978-3-319-01261-2_5
  • Costa JC, Neto C, Aguiar C, Capelo J, Espírito-Santo MD, Honrado J, Pinto-Gomes C, Monteiro-Henriques T, Sequeira M, Lousã M (2012) Vascular Plant Communities in Portugal (Continental, The Azores and Madeira). Global Geobotany 2: 180.
  • Coutinho AXP (1939) Flora de Portugal (plantas vasculares). Bertrand, Lisboa.
  • Crispim JA (2008) Património geológico da Serra de Montejunto. Sociedade Portuguesa de Espeleologia. Lisboa. ISBN 978-989-95897-0-4
  • Díaz TE, Prieto F (1994) La vegetación de Asturias. Itinera Geobotanica 8: 243–528.
  • Franco JA (1984) Nova Flora de Portugal (Continente e Açores). Lisboa.
  • Franco JA (1971) Nova Flora de Portugal (Continente e Açores) , Ed. Escolar.
  • Franco JA, Rocha-Afonso ML (1994) Nova Flora de Portugal (Continente e Açores). Ed. Escolar.
  • Géhu JM, Rivas-Martínez S (1981) Notions fondamentales de phytosociologie, in: Syntaxonomie. Vaduz: Berichte Internationalen Symposien Der Internationalen Vereinigung Fur Vegetationskunde. J. Cramer., Vaduz: 5–33.
  • Honrado J (2003) Flora e Vegetação do Parque Nacional da Serra da Peneda-Gerês (Tese de Doutoramento). Universidade do Porto, Porto.
  • Honrado J, Alves P, Aguiar C, Santiago O, Caldas FB (2003) Juresian riparian birch woodlands: Carici reuterianae-Betuletum celtibericae ass. nova. Notas de Herbário da Estação Florestal Nacional 237–241.
  • Honrado J, Alves P, Alves HN, Caldas FB (2002) XXXIII: Ten new syntaxa from the Miniensean biogeographic subsector (northwestern Portugal). Silva Lusitana 10: 247–259.
  • Lara F, Garilleti R, Calleja JA (2007) La vegetación de ribera de la mitad norte española. 2nd ed. Madrid: Centro de Estudios y Experimentación de Obras Públicas, CEDEX.
  • Van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetation 39: 97–14. https://doi.org/10.1007/BF00052021
  • Monteiro-Henriques T (2010) Landscape and phytosociology of the Paiva river's hydrographical basin. (Tese de Doutoramento). Instituto Superior de Agronomia, Universidade Técnica de Lisboa., Lisboa.
  • Monteiro-Henriques T, Costa JC, Bellu A, Aguiar C (2010) Fraxino Angustifoliae-Ulmetum glabrae: an original endemic and extremely localized forest from mainland Portugal. Braun-Blanquetia 46: 323–327.
  • Pinto da Silva A, Rozeira A, Fontes F (1950) Os carvalhais da Serra do Gerês. Esboço fitossociológico. Agron. Lusit. 12.
  • Pinto-Gomes C, Cano-Ortiz A, Quinto-Canas R, Vila-Viçosa C, Martínez Lombardo MC (2012) Analysis of the Cytisetea scopario-striati scrubs in the south-west-centre of the Iberian Peninsula. Acta Botanica Gallica 159: 251–266. https://doi.org/10.1080/12538078.2012.696937
  • Pinto-Gomes C, Paiva-Ferreira R (2005) Flora e Vegetação Barrocal Algarvio, Tavira - Portimão. CCDR Algarve, Faro.
  • Pisani B, Samper J, Marques JE (2019) Climate change impact on groundwater resources of a hard rock mountain region (Serra da Estrela, Central Portugal). Sustain. Water Resour. Manag. 5: 289–304. https://doi.org/10.1007/s40899-017-0129-0
  • Raposo M, del Río S, Pinto-Gomes C, Lazare JJ (2021) Phytosociological analysis of Prunus lusitanica communities in the Iberian Peninsula and south of France. Plant Biosystems 156(1): 1–19. https://doi.org/10.1080/11263504.2021.1998242
  • Raposo M, Mendes P, Cano-Ortiz A, Pinto-Gomes C (2016) Séries de vegetação prioritárias para a conservação no centro e sul de Portugal continental. Botanique 1: 133–148.
  • Ribeiro S, Ladero M, Espírito-Santo MD (2013) Patterns of floristic composition of Mediterranean meadows and mesophytic grasslands in eastern Continental Portugal. Plant Biosystems 147: 874–892. https://doi.org/10.1080/11263504.2013.788571
  • Rivas-Martínez S (2011) Mapa de series, geosséries y geopermaseries de vegetación de España. (Memoria del mapa de vegetatión potencial de España). Itinera Geobotanica 18.
  • Rivas-Martínez S (2005) Avances en Geobotánica. Discurso de Apertura del Curso 2005. Real Acad. Farmacia, Madrid.
  • Rivas-Martínez S, Díaz TE, Fernández-González F, Izco J, Loidi J Lousã, M Penas A. (2002) Vascular Plant Communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Part II. Itinera Geobotanica 15: 433–922.
  • Rivas-Martínez S, Penas A, del Río S, Díaz-González TE, Rivas-Sáenz S (2017a) Bioclimatology of the Iberian Peninsula and the Balearic Islands. In: Loidi J (Ed.) The Vegetation of the Iberian Peninsula. Springer, Bilbao, Spain. https://doi.org/10.1007/978-3-319-54784-8_2
  • Rivas-Martínez S, Penas A, Díaz-González TE, Cantó P, del Río S, Costa JC et al. (2017b) Biogeographic Units of the Iberian Peninsula and Baelaric Islands to District Level. A Concise Synopsis. In: Loidi J. (Ed.) The Vegetation of the Iberian Peninsula. Springer, Bilbao, Spain. https://doi.org/10.1007/978-3-319-54784-8_5
  • Rodríguez Fernández LR, López Olmedo F, Oliveira JT, Medialdea T, Terrinha P, Matas J, Martín-Serrano A, Martín Parra A, Rubio F, Marín C, Montes M, Nozal F (2015) . Mapa Geológico de Espanha e Portugal à escala 1:1000000 (1a Edição) [Map]. Sanca, S.A.
  • Rodríguez-Guitián MA, Franco RR, Rego PR (2007) Caracterização ecológica y florística de las comunidades lauroides del occidente de la Cornisa Cantábrica (Noroeste ibérica). Lazaroa 28: 35–65.
  • Santos-Silva C (1985) Contribuição para o estudo da Paisagem Protegida da Serra do Açor: Elementos sobre a Flora Briológica e Estrutura da Vegetação (report).
  • Silva V, Portela-Pereira E, Costa JC, Arsénio P, Monteiro-Henriques T, Neto C, Pinto-Cruz C (2012) Sobre as orlas e bosques higrófilos do Divisório Português. Acta Botanica Malacitana 37: 202–207. https://doi.org/10.24310/abm.v37i0.2692
  • Silveira PC (2007) A flora da Serra do Açor (Portugal). Guineana 13, 337.
  • Theurillat JP, Willner W, Fernández‐González F, Bültmann H, Čarni A, Gigante D, Mucina L, Weber H (2021) International Code of Phytosociological Nomenclature. 4th edition. Applied Vegetation Science 24: 12491. https://doi.org/10.1111/avsc.12491
  • van der Knaap WO, van Leeuwen JFN (1995) Holocene vegetation succession and degradation as responses to climatic change and human activity in the Serra de Estrela, Portugal. Review of Palaeobotany and Palynology 89: 153–211. https://doi.org/10.1016/0034-6667(95)00048-0

Appendixes

Appendix I – Sporadic species

Table 2 - + Quercus suber in rel. 4; + Prunella vulgaris, Ilex aquifolium and Prunus lusitanica in rel. 5.

Table 4 - + Salix atrocinerea in rel. 1; + Ilex aquifolium and Chrysosplenium oppositifolium in rel. 3.

Table 6 - + Frangula alnus, Rosa pouzinii and Pyrus cordata in rel 1; + Osmunda regalis in rel. 2; + Laurus nobilis, Luzula henriquesii, Chelidonium majus, Fragaria vesca, Urtica dioica and Omphalodes nitida in rel. 3.

Table 8 - + Rosa sp. in rel 1; + Bryonia dioica, Chelidonium majus and Fumaria officinalis in rel. 2; 2 Andryala integrifolia, + Silene latifolia and Lamium maculatum in rel. 4; + Agrimonia eupatoria, Anogramma leptophylla, Erica cinerea, Phillyrea angustifolia and Halimium alyssoides in rel. 5; 1 Ulmus glabra, + Scrophularia grandiflora, Polypodium cambricum, Corylus avellana and Luzula henriquesi in rel. 7; 1 Asphodelus ovoides, Anthoxanthum odoratum, + Fraxinus angustifolia, Dactylis lusitanica, Brachypodium sylvaticum, Galium helodes, Origanum virens and Peucedanum officinale in rel. 8; + Acacia dealbata, Fraxinus angustifolia and Scrophularia scorodonia in rel. 9; + Geranium robertianum, Vincetoxicum nigrum and Daphne gnidium in rel. 11.

Appendix II – Relevès localities

Table 2 - Rel. 1: Casas Figueira (Vide, Seia); rel. 2: Cebeça (Seia); rel. 3: Ceiroco (Pampilhosa da Serra); rel. 4: Balocas (Vide, Seia); rel. 5: Mata da Margaraça (Arganil).

Table 4 - Rel. 1: Casarias (Serra do Açor); rel. 2: Enxudro (Arganil); rel. 3: Mata da Margaraça (Arganil).

Table 6 - Rel. 1: Ribeira da Caniçada (Lapa dos Dinheiros, Seia); rel. 2: Cascata da Forja (Vide, Seia); rel. 3: Mata da Margaraça (Serra do Açor).

Table 8 - Rel. 1: Mosteiro (Viseu); rel. 2: Picão (Viseu); rel. 3: Cabeça (Seia); rel. 4: Mata do Bugalhão (Castro Daire); rel. 5: São Romão (Seia); rel. 6: Cerdeira (Lousã); rel. 7: Mata da Margaraça (Arganil); rel. 8: Mata do Bugalhão (Castro Daire); rel. 9: Alcaide (Fundão); rel. 10: Sra. do Souto (Fundão); rel. 11: Donas (Fundão).

login to comment