Print
Cyperus-dominated vegetation in the eastern Po river
expand article infoMauro Pellizzari
‡ Istituto Comprensivo “Bentivoglio”, Via Salvo D’Acquisto 5/7, I-44028 Poggio Renatico, Italy, Ferrara, Italy
Open Access

Abstract

The ephemeral vegetation dominated by Cyperus sp. pl. was surveyed and analyzed along the eastern trait of the Po River (Po Plain, Italy). Two formerly described communities were recognized: Cyperetum esculenti and Amaranthus tuberculatus-phytocoenon. A third greater cluster is assigned to a new association: Cyperetum micheliano-glomerati. It is characterized by Cyperus glomeratus, C. michelianus, C. odoratus and C. squarrosus, that have been detected on over 75 % of the relevés. The main floristic and ecological traits of these detected vegetation types are discussed.

Keywords

Bidention, Chenopodion rubri, Cyperaceae, Italy, phytosociology, therophytes

Introduction

The biodiversity changes caused by human activities are global-scale phenomena; invasive alien species (IAS) threat the diversity in the European countries from a biological and ecosystemic perspective. Following the milestone set by the DAISIE Project (an overview is in Lambdon et al. 2008), many European researchers have been involved in expanding the knowledge of local and national invasive alien plants (e.g. for Italy, Galasso et al. 2018). The invasiveness of a single alien species may cause different impacts, due to the different degrees of resistence or resilience shown by habitats and phytocoenoses (Richardson and Pyšek 2006). Nowadays a major challenge is to clarify the impact of invasive alien plants on the natural habitats, merging the data on number and invasiveness of the alien species and relating them to the vulnerability of those habitats.

The Po Plain, in Northern Italy, is one of the European territories most invaded by alien plant species (EEA 2015). The Po river bed acts as habitat corridor, so that many alien pioneer species easily become invasive. Many alien plants are typical of riverine environments and cannot expand beyond the embankments; other ruderal and synanthropic entities are characteristic of the crops, located either between the embankments or out of them, e.g. the poplar clone crops.

Some case studies showed that riparian invasive plants can change the natural habitats: fast-growing trees and shrubs can affect river biodynamics, sedimentation and erosion processes (van Oorschot et al. 2017). Perennial tall herbs as Reynoutria spp. and annual vines as Humulus japonicus or Sicyos angulatus can create dense canopies that outcompete other species (Gerber et al. 2008; Balogh and Dancza 2008; Zhao et al. 2019).

The late summer vegetation of the Po river bed is composed of a set of generalist, nitrophilous species, mixed with other taxa that show peculiar ecological preferences, especially about water availability and substrate texture. These surfaces are free from running waters only for few months or weeks a year: therefore, the plants colonizing them need to start and complete their life cycle during this short time available. The weather trends and the sediments storage caused by floods influence the extent and duration of water-free surfaces from year to year, as well as the cover of late-summer pioneer vegetation. This is a suitable environment for therophytes, like annual Cyperus species, Echinochloa crus-galli, Eragrostis pectinacea, Lindernia dubia, Panicum dichotomiflorum, Portulaca oleracea, Rorippa palustris. These taxa release a stable seed stock in the ground, that is ready to germinate as soon as possible (van der Walk 1981; Assini 2001). Despite the relate dynamics of spreading and recolonisation are various and unpredictable, a significant advantage is given by the ability to germinate before the water fully recedes (Abernethy and Willby 1999).

The genus Cyperus in Italy includes about 30 species. Many of these are expanding their distribution range, favoured by global warming. These taxa develop late in the season, when the river bed partially emerge from the water due to the decreasing flow, and/or when the waters of the rice-fields are heated enough by the sun. Ten Cyperus species grow along the Po river in the study area (Pellizzari and Verloove 2017). Among them C. flavescens, C. fuscus and C. michelianus are native. C. eragrostis, C. odoratus and C. squarrosus are neophytes from tropical America (Petrik 2003; Verloove 2014). C. microiria is native to eastern Asia (Verloove 2014). C. difformis, C. esculentus and C. glomeratus are paleo-subtropical species, native in some Mediterranean areas, but considered as aliens in Italy (Galasso et al. 2018). They are spreading in temperate areas.

This work aims to analyse the ephemeral late-summer vegetation dominated, or mainly characterized, by Cyperus sp.pl. Those types are threatened by a pool of Invasive Alien Species (Janssen et al. 2016) and poorly known in the study area. Few types of ephemeral vegetation of river beds are recognized in the Po Plain, representing the main vegetation aspects at the minimum river flow (Sartori and Bracco 1995). These types develop on stretches of the river bed, like oxbows, that are submerged during most of the year, but that in summer are separated from the main course by islands or sand banks, so that they completely dry. Some of these communities are dominated by low-grown species and mainly ascribed to the Cyperetum flavescentis (Nanocyperetalia, Isoëto-Nanojuncetea) (Biondi et al. 1997; 1999; Assini et al. 2010). Other communities are featured by medium and tall-size therophytes and were framed in the Bidentetalia tripartitae and Bidentetea (Biondi et al. 2003; 2012; Bolpagni 2013b). Outside the Po Plain, the main studies to the hygro-nitrophilous annual vegetation are focused on communities dominated by native species, in which the flatsedges and galingales usually play a minor role (Felzines and Loiseau 2005; de Foucault 2013a, b; Rennwald 2000; Schneider-Binder 2020). The scheme of Brullo and Minissale (1998) for the Western Palaearctic region needs to be upgraded by a large amount of new data, mainly for France and Spain, but also for the Italian Peninsula (Deil 2005). Only few papers, however, refer to the Po river traits.

Materials and methods

Study area

The Po river stretches for 652 km in Northern Italy, from Western Alps to the Adriatic Sea. It receives the last left tributary (Mincio river) 156 km upstream of the mouth, while the final right-handed tributary (Panaro river) 107 km upstream of the mouth. In this trait the river has flooded six times in the last two centuries (Turitto et al. 2004). After the last disastrous flood occurred in 1951, the main river bed has been permanently embanked and periodically dredged. The bends, banks and oxbows located in the upstream traits of the Po river can foster the natural ephemeral vegetation; the downstream river management as a stabilized channel, partially precludes spatial heterogeneity and habitats diversity (Shankman 1996). The relevés were carried out along the main course of the Po river, between Sermide and Panarella, upstream to the river channelization into the Po Delta branches (Fig. 1).

Figure 1. 

Study area and relevé locations.

The riverine environment is very homogeneous, due to the stabilization of the embankments, which are over 10 m high. It is distinct from the surrounding plain, lower in elevation and widely ploughed and cultivated. In the final portion of the Po river, two annual maximums are detectable in the water flow, in May and in November, respectively. From the end of May the hydrometric levels start decreasing to the minimum, which is usually reached in August, and then grow back. The decrease in solid transport due to decreasing flow significantly affects the fluvial ecosystem, causing a strong lowering of the river bed, and a widespread coastal erosion by the Adriatic Sea. The restrained summer flow and the increasing groundwater pumping for agricultural and industrial uses have led to the intrusion of salt groundwater up to 20 km in the inland (Tornatore 2008).

Following the application to Italy of the wordlwide bioclimatic classification (Rivas Martinez et al. 2011), the study area belongs to the Temperate (steppic) Macrobioclimate. The Bioclimate shifts from continental westwards to steppic eastwards. The ombrotype is lower subhumid and the thermotype is upper mesotemperate (Pesaresi et al. 2017).

Field survey

132 original relevés were done from August to October 2016, according to the phytosociological approach (Braun-Blanquet 1964; Biondi 2011). Date and location of each relevé are listed in Appendix I. Species names follow the italian checklists (Bartolucci et al. 2018; Galasso et al. 2018). Syntaxonomy follows Biondi et al. (2014).

Data analysis

The species that appeared only in 1 or 2 relevés were removed from the original matrix. The two matrixes were compared through Euclidean distance, then the reduced matrix (132 relevés for 45 species) was subjected to cluster analysis using an average-linkage algorithm in the software Cluster, version 3.0 (Stanford University 1999). The corresponding dendrogram was obtained using JavaTreeView (Saldanha 2004).

To underline the main ecological features of each observed vegetation type, the Ellenberg indicator values were calculated for each obtained cluster, and then the ecograms and the mean indicator values were compared (Pignatti et al. 2005). Life forms (Raunkiaer 1934) and chorological spectra were also calculated for each one of the three groups. The chorotypes follow Pignatti et al. (2017-2019). Archaeophytes (A) and neophytes (N) were detected according to Galasso et al. (2018).

Results

Three main groups were obtained from the cluster analysis, each one corresponding to a distinct vegetation type (Fig. 2).

The groups 1 and 2 are distinct from the last big cluster. The group 1 includes relevés dominated by Cyperus esculentus, with a constant presence of Amaranthus tuberculatus, Xanthium italicum and Portulaca oleracea (Tab. 1). This vegetation type develops mainly along the sand bank borders, that are uncovered by the water and hard dried in summer. C. esculentus is able to colonize this environment defending from surface dryness by means of deep and long rhyzomes. These stands develop further high from the water than those of the Polygono lapathifolii-Xanthietum italici, which grows in the same sandy substrates (Bolpagni 2013b). Annual flatsedges, like other silty-clay substrate species (e.g. Lindernia dubia, Eclipta prostrata) are almost absent. These communities are ascribable to the Cyperetum esculenti, present in the middle-European river beds, e.g. in Germany (Wisskirchen 1995), and France (Felzines and Loiseau 2005). In Italy it was detected along the Po river in Lombardy and Emilia-Romagna (Bolpagni 2014; Braghiroli and Bolpagni 2016), and along the Tiber river (Lastrucci et al. 2012).

Figure 2. 

The dendrogram resulting from the cluster analysis. Each group is described in the text.

Table 1.

Cyperetum esculenti Wisskirchen 1995.

Relevé number 84 49 103 76 67 27 19 21 20 22 34 80 86 47
Cover % 100 80 100 90 70 100 70 80 80 80 80 100 50 90
surface sq.m 8 10 10 8 10 12 4 6 4 8 10 10 8 8
Species number 11 14 11 10 6 7 3 6 4 5 5 6 5 10
Cyperus esculentus L. 4 2 3 4 3 3 4 4 4 4 4 4 3 4
Amaranthus tuberculatus (Moq.) J.D. Sauer 2 1 2 2 . 3 1 2 1 2 2 2 1 2
Xanthium italicum Moretti 1 1 2 3 1 2 . 1 2 2 2 3 1 1
Portulaca oleracea L. . 1 2 2 1 . 2 + 1 + 2 1 2 1
Echinochloa crus-galli (L.) P. Beauv. subsp. crus-galli 3 2 3 1 1 . . . . . 1 . . .
Cyperus glomeratus L. 2 2 2 2 . . . . . . . 1 . .
Cyperus squarrosus L. 2 3 1 . . 1 . . . + . . . .
Eragrostis pectinacea (Michx.) Nees . . 2 2 1 . . . . . . 2 2 .
Panicum dichotomiflorum Michx. 1 . 2 2 . . . . . . . . . +
Persicaria lapathifolia (L.) Delarbre . . 1 1 . . . 1 . . . . . 1
Cyperus fuscus L. 2 1 1 . . . . . . . . . . .
Cyperus michelianus (L.) Delile . 2 . . . + . . . . . . . .
Bidens frondosa L. . 1 . 1 . . . . . . . . . .
Sicyos angulatus L. . 1 . . . 1 . . . . . . . .
Lindernia dubia (L.) Pennell + 1 . . . . . . . . . . . .
Salix alba L. (pl.) . . . . . + . . . . . . . 1
Sporadic species 2 2 . . 1 . . 1 . . . . . 3

The group 2 gathers 32 relevés dominated by Amaranthus tuberculatus, a north-American dioecious amaranth, that has recently become invasive in Italy, where it grows in many disturbed habitats (Iamonico 2015). Its distribution is not influenced by sediment texture, though it often grows on sandy substrates. Similar communities were considered as a form of the pebbly-sandy shore community Polygono hydropiperis-Bidentetum tripartitae (Pellizzari 2009). In the present analysis, we follow the attribution to an Amaranthus tuberculatus-phytocoenon, characterized by this species and a pool of alien pioneer entities, much of them are typical of Bidentetalia (Bolpagni 2013b; Braghiroli and Bolpagni 2016). The cluster is characterized also by the high frequence of four flatsedge species (Cyperus squarrosus, C. michelianus, C. esculentus and C. odoratus) (Tab. 2).

Table 2.

Amaranthus tuberculatus – phytocoenon.

Relevé number 31 28 30 29 41 40 18 14 6 7 45 25 24 26 23 13 3 43 44 32 33 35 36 38 39 59 8 17 4 1 62 61
Cover % 100 80 90 90 90 80 100 90 90 100 90 90 80 90 80 90 90 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
Surface sq.m 12 20 12 20 8 6 8 10 10 10 10 12 10 10 12 10 10 10 8 16 14 12 10 12 12 6 10 10 10 10 16 12
Species number 12 10 13 11 8 10 5 8 9 7 11 6 6 8 7 3 9 13 10 13 11 8 11 8 10 11 5 5 7 7 8 9
Amaranthus tuberculatus (Moq.) J.D. Sauer 4 3 4 4 3 2 2 2 2 3 2 3 3 4 4 5 3 3 3 2 3 3 2 2 2 1 1 4 3 4 5 5
Cyperus michelianus (L.) Delile 1 1 2 1 2 2 1 2 2 2 2 . . 2 2 1 1 2 1 2 1 2 1 3 3 4 5 3 4 2 1 1
Cyperus squarrosus L. 2 2 2 1 2 3 3 3 3 3 3 4 3 2 1 1 2 1 1 3 2 2 2 3 3 . . . . . 1 2
Cyperus esculentus L. 2 1 1 1 2 2 3 3 1 2 2 1 1 1 1 . . 1 . 1 2 1 1 . . . . . . . . .
Cyperus odoratus L. . . 1 1 . . . . . . . . . . . . 1 3 4 3 1 3 4 3 2 1 1 . 1 + . 1
Species of higher syntaxa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Echinochloa crus-galli (L.) P. Beauv. subsp. crus-galli 1 . . . + 1 . . 1 1 + . . . . . 1 2 . 1 + . + . + 2 . 1 + 1 . .
Rorippa palustris (L.) Besser 1 2 1 1 2 2 . . . . . . . . . . . . + . . . . . 1 1 . . . . . .
Persicaria lapathifolia (L.) Delarbre . . . . . . . . . . + . . . . . . 1 1 2 2 1 1 + . . . . + . . .
Bidens frondosa L. . . . . . . . . . . + . . . . . . . 1 1 1 . + . 1 + + . . 1 . .
Xanthium italicum Moretti . . . . . . + . . . . . . 1 1 . 1 1 1 + . . . . . 1 . . . . . .
Cyperus glomeratus L. . . . . . . . 1 1 . . . . . . . . 1 . . . . . . . . . 1 . . 2 2
Persicaria maculosa Gray . . . + . . . . . . . . . . + . . . . . . . . . . . . . . 1 1 2
Lycopus europaeus L. 1 + . . . . . 1 . . . . . . . . . . . . . . . + . 1 . . . . . .
Rorippa prostrata (J.P.Bergeret) Schinz & Thell. . . . . . . . . . . . . . . . . . . . 2 1 . 1 . 1 . . . . . . .
Ranunculus sceleratus L. + + + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bidens vulgata Greene . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
Panicum dichotomiflorum Michx. . . . . . . . . + . 1 . . . . . . . . . . . . . . . . . + . . .
Bidens connata Muhl. ex Willd. . . . . . . . . . . . . . . . . 1 + . . . . . . . . . . . . . 1
Mollugo verticillata L. + 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Portulaca oleracea L. 1 + 1 + 3 2 . . . . . . . . . . + 1 . 1 2 2 2 1 2 . + . . . . .
Lindernia dubia (L.) Pennell + . 1 1 1 2 . . . . 1 . . . . . . 1 1 1 1 1 1 2 1 1 . . . . . .
Salix alba L. (pl.) . . . . . . . 1 . . . + 1 + . . . . . . . . . . . . . 1 . . 2 2
Paspalum distichum L. . . . . . . . . + 2 . . . . . . . . . . . . . . . . . . + + . .
Artemisia annua L. . . + . . 1 . . . . . . . . . . . . . + . . . . . + . . . . . .
Lythrum salicaria L. . . . . . . . 1 1 1 . . . . . . . . . . . . . . . . . . . . . .
Eclipta prostrata (L.) L. . . . . . . . . . . . + . 1 1 . . . . . . . . . . . . . . . . .
Sicyos angulatus L. . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . 2 1
Ludwigia peploides (Kunth) P.H.Raven subsp. montevidensis (Spreng.) P.H.Raven . . . . . . . . . . . 1 + . . . . . . . . . . . . . . . . . . .
Chenopodium album L. subsp. album . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sporadic species 1 . 2 . . 1 . . . . 2 . 1 . . . 1 1 1 . . . . . . 1 . . . . . .

The last big cluster (group 3) is interpretable as a single vegetation type, able to grow on medium-fine substrates. This cluster is very homogeneous, especially in its central part. The most frequent species of this group is Cyperus glomeratus (100 %), followed by C. odoratus, Echinochloa crus-galli, C. michelianus, C. squarrosus and Amaranthus tuberculatus, all reaching over 75 %.

The average species number of the whole group results in 11.5; some relevés, to the left side of the group, are slightly different based on the higher average number (12.6), due to the presence of Amaranthus tuberculatus, Eragrostis pectinacea, Portulaca oleracea and other species that document a major disturbance, while other Cyperus species play a minor role.

The central part of the cluster represents the typical aspect of the community: C. odoratus, C. michelianus and C. squarrosus may show equal or higher cover than C. glomeratus. Lindernia dubia and Panicum dichotomiflorum are also frequent species, when Amaranthus tuberculatus decreases and runs out (Tab. 3).

Table 3.

Cyperetum micheliano-glomerati ass. nova (part I).

Relevé number 117 85 73 74 102 121 120 119 107 108 70 104 69 89* 105 72 65 106 79 99 83 71 42 127 58 56 57
Cover % 100 90 100 100 90 100 90 80 100 90 100 100 100 90 100 100 90 100 100 80 100 100 100 100 100 90 100
Surface sq.m 4 10 8 12 8 10 10 8 20 10 8 14 10 10 10 14 12 20 20 10 12 12 12 16 16 12 12
Species number 13 15 11 15 13 14 12 8 13 14 11 13 16 12 14 9 12 13 10 18 14 12 10 11 7 7 8
Character species
Cyperus glomeratus L. 3 4 3 3 3 4 3 3 4 2 3 4 4 3 4 4 3 4 5 3 4 2 3 2 2 3 2
Cyperus odoratus L. 2 1 . 1 1 1 . . 2 3 2 2 2 2 2 3 2 2 2 2 3 3 2 2 3 2 2
Cyperus michelianus (L.) Delile 1 1 1 . . 1 . . 1 2 1 2 2 2 2 2 2 2 1 2 2 3 3 4 4 4 3
Cyperus squarrosus L. . 2 2 . 1 1 2 2 2 1 2 2 2 1 2 1 1 1 . 1 1 2 2 2 1 1 2
Alliance, order, class species
Echinochloa crus-galli (L.) P. Beauv. subsp. crus-galli 1 . 2 2 . 2 2 1 1 1 . 1 + 1 2 1 2 2 2 + 2 2 1 1 1 + .
Amaranthus tuberculatus (Moq.) J.D. Sauer 1 3 4 2 2 3 2 2 . . 1 1 2 1 1 1 2 1 2 2 2 1 2 + . 1 2
Lindernia dubia (L.) Pennell . 1 . 1 2 . . . 1 2 1 1 1 2 2 2 2 1 2 2 2 2 1 + . . .
Panicum dichotomiflorum Michx. 2 + 2 1 1 . . . + 1 . 1 . . . . . . . + 1 . . . . . .
Xanthium italicum Moretti . . . 2 1 . + . + . 2 . + . . . . . . . . . . 1 . . .
Portulaca oleracea L. . . 2 2 3 2 + 2 . . . 1 + . . . + . . + . + . 1 . . .
Persicaria lapathifolia (L.) Delarbre 1 . . 1 + 1 + 1 . . . . . + . . 1 + 1 . . . . . . . .
Cyperus esculentus L. . . . 2 1 + . . . . . . . . . . . . . . . . . . . . +
Bidens vulgata Greene 1 . 1 . . + . . 1 + + . . . + . . + + 1 . 2 1 . . . .
Artemisia annua L. . + + + . . . . . . . + . 1 . . . . . 1 . . . . . . .
Bidens connata Muhl. ex Willd. + . . 1 . . . . 1 1 . . . . . . . . . 2 2 . . . . . .
Rorippa palustris (L.) Besser . + 1 . . + . . . 1 . . + . + . . . . 2 1 . + . . . .
Lycopus europaeus L. . . . . . . . . . . . . . . . . . . . . . . . + . . .
Bidens frondosa L. . . . . . . . . . . . . . . . . + . . . . . . . . . .
Ranunculus sceleratus L. . + . . . . . . . . . . . + . . . . . 1 + . . . . . .
Persicaria dubia (Stein.) Fourr. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other species
Cyperus fuscus L. 1 1 . 2 2 2 3 3 4 3 2 2 2 2 1 2 2 4 3 1 1 1 . . . . .
Eragrostis pectinacea (Michx.) Nees . 2 1 3 1 2 2 2 . . . 1 1 . . . . . . . . . . . . . .
Salix alba L. (pl.) . . . . . . . . 1 . . 2 1 . 1 . . 2 . 2 1 . . . . 2 1
Cyperus difformis L. . . . . . . 3 . . . . . . . . + . 1 . . . . . + . . .
Cyperus microiria Steud. . . . 1 1 2 1 . . 1 1 . 1 . . . 1 . . . . . . . . . .
Eclipta prostrata (L.) L. + . . . . . . . . . . . . . . . . 1 1 . 1 . . . . . .
Ammannia coccinea Rottb. . . . . . . . . . 1 + . . . . . . . . . . + . . . . .
Sicyos angulatus L. . . . . . . . . . . . . . . . . . . . + . . . . . . .
Sporadic species 2 3 . . . . 1 . 1 1 . . 2 1 3 . . . . 1 . 1 1 . 2 . 1
Table 3.

Cyperetum micheliano-glomerati ass. nova (part II).

Relevé number 109 111 63 64 46 48 50 66 54 55 81 75 116 95 101 98 94 93 92 91 113 100 110 96 97 60 82 115
Cover % 100 70 80 90 100 100 90 70 100 100 90 90 90 90 90 100 100 95 100 100 100 90 100 100 100 100 100 100
Surface sq.m 12 10 8 12 8 10 14 10 10 14 10 10 6 12 10 12 16 10 12 16 14 10 12 14 16 20 14 16
Species number 12 9 7 10 14 12 11 10 7 8 10 13 15 15 13 15 13 13 12 15 13 17 11 15 13 6 11 14
Character species
Cyperus glomeratus L. 2 2 3 3 2 1 2 3 3 2 3 3 3 3 2 3 3 2 2 3 2 3 2 3 4 3 3 2
Cyperus odoratus L. 3 1 1 2 1 2 1 . . . . 1 3 3 2 2 2 2 1 2 3 2 2 2 1 2 3 3
Cyperus michelianus (L.) Delile 2 2 . 1 1 3 2 2 4 3 3 2 1 2 1 1 4 4 5 2 1 1 4 2 3 1 3 3
Cyperus squarrosus L. 3 3 2 3 2 2 2 2 1 2 2 2 2 2 1 3 . 1 . 1 4 2 2 1 2 . . 1
Alliance, order, class species
Echinochloa crus-galli (L.) P. Beauv. subsp. crus-galli 2 1 2 2 2 2 3 + 1 1 2 1 1 1 2 2 2 3 2 2 + 1 2 2 2 2 1 2
Amaranthus tuberculatus (Moq.) J.D. Sauer 2 2 2 2 3 3 2 2 2 3 3 2 2 2 1 2 1 2 1 3 2 2 1 2 1 4 3 2
Lindernia dubia (L.) Pennell . + 2 2 1 1 1 1 + + 1 . 1 1 2 1 1 1 2 2 1 2 . 1 2 . 1 1
Panicum dichotomiflorum Michx. . . . . . . . . . . 2 2 2 1 2 1 + . 1 2 1 2 2 2 2 2 2 1
Xanthium italicum Moretti 1 . . . 1 . . . . . . 1 + . + 1 1 + + 1 1 1 1 1 1 . 2 +
Portulaca oleracea L. 1 + 1 1 1 2 . + . . . 1 1 + . 1 + . . 1 . . . . . . . +
Persicaria lapathifolia (L.) Delarbre 1 1 . + 1 . . . . . . 1 + 1 + 1 1 1 2 2 2 1 1 1 1 . 1 1
Cyperus esculentus L. . . . . . . . . . . . 1 . . . . . . . . 1 2 1 2 1 . . .
Bidens vulgata Greene 1 . . . . . . . . . . . . . . + . . . . 2 2 + 1 1 . 1 1
Artemisia annua L. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bidens connata Muhl. ex Willd. . . . . . . . . . . . . . . . + 1 + . . 1 1 . . . . . .
Rorippa palustris (L.) Besser . . . . . . . + . . . . . + . . . . . . . 1 . . . . . .
Lycopus europaeus L. . . . . . . . . . . . . . . . . . . . + . . . + . . . .
Bidens frondosa L. . . . . . 1 1 . . + . . . . . . . . . . . . . . . . . .
Ranunculus sceleratus L. . . . . . . . . . . . . . . . . . . . . . + . . . . . .
Persicaria dubia (Stein.) Fourr. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other species
Cyperus fuscus L. 1 . . 1 + 1 2 . . . 1 1 1 1 3 3 2 1 2 2 . 1 . 1 3 . . .
Eragrostis pectinacea (Michx.) Nees . . . . . 1 1 1 . . . 3 . 2 1 2 . . + 1 . . . . . . . .
Salix alba L. (pl.) 1 . . . . . . . . . 1 . . . . . . . . . . . . . . . . .
Cyperus difformis L. . . . . . . 2 . . . . . 1 1 1 . 2 1 . . . . . 1 . . . 1
Cyperus microiria Steud. . . . . . . . 1 . . . . . 1 . . . 1 1 1 . 1 . . . . . .
Eclipta prostrata (L.) L. . . . . . . . . . . 1 . + . . . . . . . . . . . . . + 2
Ammannia coccinea Rottb. . . . . . . . . . . . . + . . . . . . . . . . . . . . .
Sicyos angulatus L. . . . . . 1 . . 1 1 . . . . . . . . . . . . . . . . . .
Sporadic species . . . . 3 . . . . . . . . . . . . . . . . . . . . . . .
Table 3.

Cyperetum micheliano-glomerati ass. nova (part III).

Relevé number 90 52 51 53 68 136 134 130 131 133 128 126 78 77 129 132 11 12 10 15 16 114 112 135 125 124 123 122
Cover % 100 100 90 100 70 90 100 80 100 100 100 100 100 100 100 80 80 100 75 90 90 100 100 80 80 100 100 90
Surface sq.m 12 16 20 10 12 12 10 12 16 12 16 20 12 10 14 10 10 10 8 8 8 10 10 10 10 12 8 10
Species number 9 15 14 11 11 14 13 11 12 11 13 9 12 7 12 10 11 9 5 4 4 14 13 12 10 10 8 14
Character species
Cyperus glomeratus L. 2 3 2 3 3 4 1 3 2 3 2 1 5 5 4 4 4 4 3 4 4 2 3 2 2 1 1 2
Cyperus odoratus L. 3 2 2 3 2 2 3 3 2 2 1 1 2 1 3 2 . . . 1 1 2 2 3 3 2 4 3
Cyperus michelianus (L.) Delile 3 2 3 2 1 3 2 2 4 4 5 5 1 . 2 . 1 . 1 2 1 . 1 . . . . .
Cyperus squarrosus L. . 1 1 . 2 2 4 2 4 . 2 2 . . 1 1 . . . . . 3 . 4 4 5 4 3
Alliance, order, class species
Echinochloa crus-galli (L.) P. Beauv. subsp. crus-galli 2 2 1 2 . . 3 2 1 2 1 . 3 3 1 . 2 1 . . . 1 1 2 1 2 2 2
Amaranthus tuberculatus (Moq.) J.D. Sauer 3 2 2 2 1 . + . . . + . 1 . + . . 1 . . . 2 2 . . . . .
Lindernia dubia (L.) Pennell 2 1 1 1 . + 1 + . + 2 1 2 . . . . . . . . . . . . . . .
Panicum dichotomiflorum Michx. 1 . . . . . 2 1 1 2 2 1 2 1 2 1 . . . . . 3 3 1 1 2 3 2
Xanthium italicum Moretti . 1 2 + 1 + 2 1 2 1 2 + . 1 . . . . . . . 3 2 1 1 2 1 1
Portulaca oleracea L. . 1 1 1 + 1 1 . 1 + + 1 1 . . . . . . . . . 1 1 1 1 + 1
Persicaria lapathifolia (L.) Delarbre 2 1 . . . + . . . 1 1 . . 1 . . . . . . . 1 1 . . . 1 1
Cyperus esculentus L. . 2 2 1 . . 1 1 + . 1 . . . . . 1 1 1 1 1 2 2 1 . 1 . 1
Bidens vulgata Greene . . . . . . . . . . . . . . . . . . . . . 3 2 . . . . .
Artemisia annua L. . + . . . 1 1 1 . + + 1 . . 1 1 . . . . . . . + . . . .
Bidens connata Muhl. ex Willd. . . . . . . . . . . . . 3 . . . . . . . . 3 . . . . . .
Rorippa palustris (L.) Besser . . . . . . . . . . . . . . 3 . . . . . . . . . . . . .
Lycopus europaeus L. . . . . . 1 . 1 + . . . . . + 2 1 + . . . . . . . + . .
Bidens frondosa L. . . + . . . . . . . . . 5 3 . . . . . . . . . . . . . .
Ranunculus sceleratus L. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Persicaria dubia (Stein.) Fourr. . . . . . . . . . . . . . . 2 + . . . . . 1 . . . + . .
Other species
Cyperus fuscus L. . . 1 2 . . . . . . . . 2 . . 1 . . . . . . . . . . . 1
Eragrostis pectinacea (Michx.) Nees . 2 2 2 2 1 . . 1 . . . 2 . . . . . . . . . . . . . . 2
Salix alba L. (pl.) . . . . 1 1 . . . . . . . . 1 + 1 + 2 . . . . . . . . .
Cyperus difformis L. . . . . . . . . . . . . . . . . . . . . . 1 2 1 2 . . 2
Cyperus microiria Steud. . . . . . . . . 1 . . . . . . . . . . . . . . 1 . . . 2
Eclipta prostrata (L.) L. . . + . . + . . . 1 . . . . . 1 . . . . . . . . + . . .
Ammannia coccinea Rottb. . . . . . . . . . . . . . . . . . . . . . 2 3 . . . . .
Sicyos angulatus L. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sporadic species 1 2 . . 2 1 1 . . . . . . . . . 5 3 1 . . . . 1 1 . . 1

Given the homogeneity and distictiveness of this big cluster, a new association is described: Cyperetum micheliano-glomerati ass. nova hoc loco (Bidention, Bidentetalia, Bidentetea). (Holotypus: rel. 89* tab. 3, Porporana – FE, 2016 09 12). Its characteristic species are C. glomeratus, C. michelianus, C. odoratus, C. squarrosus. The vegetation type appears as therophytic fringes or meadows, which are frequently arranged in two layers. These flatsedge meadows are very dense along the gentle slopes and sparser on the dry bottom of the oxbows, marked by the characteristic polygonal muds. The upper level contacts of the community are often several communities of Bidention or Chenopodion rubri, such as the Amaranthus tuberculatus-phytocoenon or the Cyperetum esculenti, whilst the lower level contacts are carpets of Eclipta prostrata, Lindernia dubia or rarely Ludwigia peploides subsp. montevidensis. These reptohelophytic species tend to grow also into a shallow water layer.

The main ecological traits of the observed vegetation types are confirmed by the comparison of the mean Ellenberg values calculated for each group of relevés (Tab. 4). The ecograms are basically similar, with all the vegetation types showing high values for light, temperature and moisture; the indicator values for continentality, soil reaction and nutrients are lower (Fig. 3). The Amaranthus tuberculatus-phytocoenon shows the highest N value (6.25), due to the presence of a pool of summer-annual weeds, that also colonize crops and poplar plantations of the Po plain.

The Cyperetum micheliano-glomerati shows the highest moisture index (7.89). It is characterized also by high light and temperature, due to its tendency to grow in the lowest parts of the dried river bed, that are far from temporary shading effects.

The three recognized vegetation types show the typical traits of the pioneer ephemeral vegetation, as it is clearly showed by the life form spectra, that are dominated by therophytes (Fig. 4). Cyperus glomeratus, often a helophyte in reedbeds, behaves as annual in the surveyed environments, spreading from the spring seed stock. The bar graph data include the sporadic species. If these are neglected, the therophyte rate rises on Cyperetum micheliano-glomerati from 64% to 89.2%.

In the chorological spectra, neophytes are the main groups (Cyperetum esculenti 52%; Amaranthus-phytocoenon 43.6%; Cyperetum micheliano-glomerati 45.3%), but also the other major groups have a wide distribution (Cosmopolitan/Subcosmopolitan, Eurasian incl. Palaeotemperate) (Fig. 5).

Figure 3. 

Ecograms for the three vegetation types detected through the analysis.

Figure 4. 

Life forms spectra of the three vegetation types detected through the analysis.

Figure 5. 

Chorological spectra of the three vegetation types detected through the analysis.

Table 4.

Mean values of the Ellenberg-Pignatti Indexes for the three groups.

L T C U R N
Cyperetum esculenti 7.25 7.44 4.93 7.44 6.08 6
Amaranthus tuberculatus-phytocoenon 7.32 7.36 5.12 7.52 6.21 6.25
Cyperetum micheliano-glomerati 7.39 7.4 5 7.89 6.04 6

Discussion and conclusions

Both Cyperetum esculenti and Amaranthus tuberculatus-phytocoenon, as the above mentioned Polygono-Xanthietum, Polygono-Chenopodietum known from Lombardy (Sartori and Bracco 1995; Assini et al. 2010) and Echinochloo-Polygonetum lapathifolii known from Tuscany (Lastrucci et al. 2014), are included in the Chenopodion rubri of Bidentetalia and Bidentetea tripartitae. Felzines and Loiseau (2005) suggest to divide the Chenopodion rubri in three sub-alliances. One of these, Eragrostienion pilosae, is also characterized by Cyperus esculentus and Eragrostis pectinacea, and includes the Cyperetum esculenti.

The Amaranthus tuberculatus-phytocoenon could provide the basis for the description of a new association, dominated by the wide spectrum weed A. tuberculatus, but it is difficult to identify a clear combination of constant species. Due to its size (sometimes over 2 m) and invasiveness, that weed outcompetes the dominant and characteristic species of all Bidention-communities, whose cover values seem underestimated. C. michelianus and C. squarrosus are able to grow under the thick layers of Amaranthus, unlike, for instance, C. glomeratus. To assign this community to a subassociation or variant of Polygono hydropiperis-Bidentetum tripartitae could mean to underrate the role of A. tuberculatus; conversely, to tipify a new association could mean too emphasize it. The relatively low number of Bidention different communities is related to a large variation of each type, under the aspect of species composition, physiognomy and anthropic pressures (Neacşu and Arsene 2017). Further data and a comparison with other situations outside of the river bed (such as crops or disturbed areas, in which A. tuberculatus is equally invasive), are needed for the institution of a new syntaxon (Costea et al. 2005).

The palaeosubtropical species Cyperus glomeratus and C. michelianus give the name to the newly described association Cyperetum micheliano-glomerati, for which also the American neophytes C. odoratus and C. squarrosus are listed as character species. The highlighting of the palaeosubtropical entities (Fig. 5) is seen as an opportunity for reconsidering the status of Cyperus glomeratus compared to C. michelianus. Both are native from Eastern European/Western Asian areals, and nowadays the first is also considered native in Italy by Euro+Med Database (Jimenez-Mejas and Luceño 2011) and IUCN (Kavak 2014). The European distribution ranges of the first two flatsedges are considerably overlapping. Outside Europe, C. michelianus is nowadays widespread in Africa and southern Asia (Lansdown 2014), while C. glomeratus is common further north, up to Korea and Japan (Kavak 2014). Linnaeus (1756) described C. glomeratus based on an Italian specimen (Peruzzi et al. 2008); C. australis Schrad. is a later synonymous of C. glomeratus (Govaerts and Simpson 2007). The species was widespread, although rare, and not strictly linked to rice fields. Indeed, this habitat favoured different species as C. difformis and C. fuscus, both assigned to subgenus Anosporum: their C3 photosynthetic pathway gives them an ecological advantage in habitats flooded for long time (Matsunaka 1983; Pellizzari and Verloove 2017).

C. glomeratus has a wide ecological amplitude. In addition to the presence in the studied late summer vegetation, it plays an active role in building helophytic fringes of Phragmition, along rivers and around lakes, in fresh or brackish waters (Bragato et al. 2006; Biondi et al. 2009). Along the Chienti river (Marche), a C. glomeratus-dominated community was framed into the Magnocaricion (Crisanti and Taffetani 2015). Another C. glomeratus-community found along the Po river was framed into the Chenopodion rubri (Sartori and Bracco 1996; Pellizzari 2009; Assini et al. 2010). Other C. glomeratus-dominated communities were ascribed either to the Bidention or to the Nanocyperion, e.g. along the Po river up to the Venetian Delta (Marconato et al. 2014). At Lake Pistono (Piedmont), some seasonally flooded muddy shores host flatsedge communities: Cyperetum flavescentis close to the water and a Bidention-community with C. glomeratus in less flooded sites (Tisi et al. 2007). A C. glomeratus-community of Nanocyperion can be found in two sites in Lombardy; it is dominated by C. glomeratus, C. fuscus and C. michelianus (FLA 2008). In these cases native species are dominant, unlike along the Po river. In Slovakia, C. glomeratus was reported in the Danube river beds in the middle 19th century, and was recently rediscovered in few sites. Here the species characterizes an ephemeral, two-layered vegetation type, with features of both Nanocyperion and Bidention, interpreted as a highly ruderal facies of Cyperetum micheliani (see below: Meleckova et al. 2016). Downstream along the Danube river, from the Eastern Wallachia to the Delta, both C. glomeratus and C. michelianus are characteristic of the macrophytes riparian vegetation (Stankovic et al. 2015).

The second characteristic species of Cyperetum micheliano-glomerati is another linnean species from Italy, Cyperus michelianus. It is diagnostic of several European plant communities. Lacking of Western taxa, some of these (Cyperetum micheliani, Lindernio–Dichostylidetum michelianae) are clearly continental, known from Central and Eastern Europe (Trpin et al. 1996; Jasprica et al. 2003; Šumberová 2011; Dubina et al. 2015). Except for Cyperus fuscus, the diagnostic species of Cyperetum micheliani sensu Šumberová (2013) are rare or completely missing along the Po river. Other communities characterized by C. michelianus develop in the Atlanto-Mediterranean range, i.e. in France and Spain (Corillion 1971; de Foucault 2013b; Cochard and Guitton 2014; Renaux 2014; Rivas-Martinez et al. 1980 ; Camacho et al. 2009). In Emilia-Romagna, along and near the Secchia river, the Crypsio schoenoidis-Cyperetum micheliani grows on silty-clay soils (EGPB Emilia Centrale 2013). Within the study area of this work, a C. michelianus-community of Heleochloo-Cyperion was detected at first (Pellizzari 2009). Based on the results of this study, it can be assigned to the new described association, that reports in the same habitat C. glomeratus and C. michelianus together with C. squarrosus and C. odoratus. The last one peculiar species was recently discovered during an investigation of the Po river bed, and in several herbarium specimen (Verloove 2014). In particular, some of them were correctly identified after a former attribution to Cyperus strigosus (Lastrucci et al. 2016; Pellizzari and Verloove 2017). C. odoratus is naturalizing at least in three different European areas (Verloove 2014): a) the Po river in Italy; b) along the Danube river in Serbia, and in its Delta in Romania (Anastasiu and Negrean 2006); c) in NE Spain, along the Segre river down to the confluence with the Ebro. Nowadays C. odoratus is rather common in the Po river beds of Lombardy (Galasso and Banfi 2015), Emilia-Romagna (Verloove 2014), Veneto (Masin et al. 2015) and Tuscany (Lastrucci et al. 2016; 2017).

The last species, C. squarrosus, reached the Po plain in the late 19th century (Cavara 1899), but its spread began in the muddy river beds and ponds only in the last years (Bolpagni 2013a, b).

Despite a resemblance with the Cyperetum micheliani identified along the Danube river in Slovakia and Hungary, the Cyperetum micheliano-glomerati is rather different. In fact, the communities that grow along the Po river have a higher total cover (often 100 %) and are characterised by a pool of Cyperus species. This is a peculiarity of such vegetation. Along the Po river, near Mantua, no aspects simultaneously dominated by different Cyperus species were found: similar situations were dominated by a larger neophyte set, mainly composed by graminoid grasses (Echinochloa crus-galli, Panicum sp. pl., Paspalum distichum) (Bolpagni 2013b). The only abundant flatsedge was C. squarrosus, and that suggested to frame those communities, in which C. glomeratus and C. difformis played a minor role, in the Nanocyperion. Communities of the Nanocyperion flavescentis are composed of native species and clearly different from the newly typified community. Here, only C. flavescens is characteristic of alliance, while C. fuscus and C. michelianus are characteristic of order (Brullo and Minissale 1998).

The following observations support the inclusion of the Cyperetum micheliano-glomerati in the Bidention (Bidentetea):

1. A major role, together with Cyperus spp., played by characteristic species of Bidention and of higher syntaxonomic units (Echinochloa crus-galli, Amaranthus tuberculatus, Lindernia dubia, Persicaria lapathifolia, Panicum dichotomiflorum, Bidens connata, B. frondosa, etc.);

2. The alien origin of some pioneer species, that witness both high soil eutrophication and disturbance of the regular flooding, able to carry seed stocks;

3. The fine particle size of silty-clay substrates, compared with that of contact communities of Chenopodion rubri.

According to Biondi et al. (2012), communities of Cyperetum micheliano-glomerati are referable to the habitat 3270 “Rivers with muddy banks with Chenopodion rubri p.p. and Bidention p.p. vegetation” (CORINE Biotopes 22.33 and 24.52; EUNIS C3.52 and C3.53). In Italy this habitat is widespread and typically invaded by alien plants, much of which are of tropical and subtropical origin (Zivkovic and Biondi 2010). The next goal will be to clarify the synecology of these alien, often invasive entities (Assini et al. 2010).

The human impacts drastically changed the final stretch of the Po River bed, so that it is very homogeneous and artificial. The late summer ephemeral vegetation is easily replaced by long-lasting secondary vegetation or directly destructed. That underlines the rareness and fragility of such habitat (Bolpagni 2013b; Ditetova et al. 2016). The typified Bidention-community expresses an aspect of conservation interest, in spite of its alien species richness. Anyway it is lower, if compared with the other aspects framed in the Chenopodion rubri. The Cyperetum micheliano-glomerati preserves the natural traits and plays an important ecological role when compared to the artificially managed river beds and river banks.

Syntaxonomic scheme

BIDENTETEA TRIPARTITAE Tüxen, Lohmeyer et Preising ex von Rochow 1951

BIDENTETALIA TRIPARTITAE Br.-Bl. et Tüxen ex Klika in Klika et Hadač 1944

Chenopodion rubri (Tüxen 1960) Hilbig et Jage 1972

Eragrostienion pilosae Felzines et Loiseau 2005

Cyperetum esculenti Wisskirchen 1995 [cluster 1]

Amaranthus tuberculatus-phytocoenon Bolpagni 2013 [cluster 2]

Bidention tripartitae Nordhagen 1940 em. Tüxen in Poli et J. Tüxen 1960

Cyperetum micheliano-glomerati ass. nova [cluster 3]

Other syntaxa quoted in the text

Crypsio schoenoidis–Cyperetum micheliani Martinez Parras, Peinado Lorca, Bartolomé Esteban et Molero Mesa 1988; Cyperetum flavescentis W. Koch ex Aichinger 1933; Cyperetum micheliani Horvatic 1931; Echinochloo–Polygonetum lapathifolii Soó et Csürös 1974; Lindernio–Dichostylidetum michelianae Slavnic 1951; Nanocyperion flavescentis Koch ex Libbert 1932; Polygono-Chenopodietum Lohmeyer 1970; Cyperus glomeratus-variant; Polygono hydropiperis–Bidentetum tripartitae Lohm. in Tüxen 1950; Polygono lapathifolii–Xanthietum italici Pirola et Rossetti 1974.

Acknowledgements

I would like to thank my friends A. Alessandrini and F. Verloove, that took part to the field surveys, and L. Lastrucci, which decisively contributed to the syntaxonomy. I thank the anonymous reviewers for their many insightful comments and suggestions, and L. Ariati for the English text revision.

Finally, thanks to my son Tommaso, that accompanied me in the sands and muds of the Po river.

Bibliography

  • Abernethy VJ, Willby NJ (1999) Changes along a disturbance gradient in the density and composition of propagule banks in floodplain aquatic habitats. Plant Ecology 140: 177–190. https://doi.org/10.1023/A:1009779411686
  • Anastasiu P, Negrean G (2006) Alien vascular plants in Dobrogea (Romania) and their impact on different types of habitats. Plant, fungal and habitat diversity investigation and conservation. Proceedings of IV BBC – Sofia ' 2006: 590–596.
  • Assini S, Bracco F, Carrea A, Villani M (2010) Stato delle conoscenze floristico-vegetazionali sul corso planiziale del Fiume Po e dei suoi affluenti. Biologia Ambientale 24(1): 111–128.
  • Balogh L, Dancza I (2008) Humulus japonicus, an emerging invader in Hungary. In: Tokarska-Guzik B, et al. (Eds) Plant Invasions: Human perception, ecological impacts and management: Backhuys, Leiden, 73–91.
  • Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG, Astuti G, Bacchetta G, Ballelli S, Banfi E, Barberis G, et al. (2018) An updated checklist of the vascular flora native to Italy. Plant Biosystems 152(2): 179–303. https://doi.org/10.1080/11263504.2017.1419996
  • Biondi E, Vagge I, Baldoni M, Taffetani F (1997) La vegetazione del Parco fluviale regionale del Taro (Emilia-Romagna). Fitosociologia 34: 69–110.
  • Biondi E, Vagge I, Baldoni M, Taffetani F (1999) La vegetazione del Parco fluviale Regionale dello Stirone (Emilia-Romagna). Fitosociologia 36(1): 67–93.
  • Biondi E, Vagge I, Baldoni M, Taffetani F (2003) Biodiversità fitocenotica e paesaggistica dei fiumi dell’Italia centro-settentrionale: aspetti fitosociologici e sinfitosociologici. Studi Trentini Scienze Naturali Acta Biologica 80: 13–21.
  • Biondi E, Zivkovic L, Esposito L, Pesaresi S (2009) Vegetation, plant landscape and habitat analyses of a fluvial ecosystem in central Italy. Acta Botanica Gallica 156(4): 571–587. https://doi.org/10.1080/12538078.2009.10516178
  • Biondi E, Burrascano S, Casavecchia S, Copiz R, Del Vico E, Galdenzi D, Gigante D, Lasen C, Spampinato G, Venanzoni R, Zivkovic L, Blasi C (2012) Diagnosis and syntaxonomic interpretation of Annex I Habitats (Dir. 92/43/ EEC) in Italy at the alliance level. Plant Sociology 49(1): 5–37.
  • Biondi E, Blasi C, Allegrezza M, Anzellotti I, Azzella MM, Carli E, Casavecchia S, Copiz R, Del Vico E, Facioni L, Galdenzi D, Gasparri R, Lasen C, Pesaresi S, Poldini L, Sburlino G, Taffetani F, Vagge I, Zitti S, Zivkovic L (2014) Plant communities of Italy: The Vegetation Prodrome. Plant Biosystems 148(4): 728–814. https://doi.org/10.1080/11263504.2014.948527
  • Bolpagni R (2013a) G.3 le tipologie vegetazionali rilevate. In Relazione sul SIC IT 4030015 Valli di Novellara: Quadro conoscitivo. Provincia di Reggio Emilia.
  • Bolpagni R (2013b) G.3 le tipologie vegetazionali rilevate. In: Relazione sul SIC IT 4030020 Golena del Po di Gualtieri, Guastalla e Luzzara: Quadro conoscitivo. Provincia di Reggio Emilia.
  • Bolpagni R (2014) E.3 le tipologie vegetazionali rilevate. In: Relazione sul SIC IT 4030023 Fontanili di Gattatico e fiume Enza: Quadro conoscitivo. Provincia di Reggio Emilia.
  • Bragato C, Brix H, Malagoli M (2006) Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice Lagoon watershed. Environmental Pollution 144: 967–975. https://doi.org/10.1016/j.envpol.2006.01.046
  • Braghiroli S, Bolpagni R (2016) Piano di gestione della Riserva Naturale Regionale "Garzaia di Pomponesco", della ZPS IT20B0402 e del SIC IT20B0015. 1. Studio interdisciplinare.
  • Brullo S, Minissale P (1998) Considerazioni sintassonomiche sulla classe Isoeto-Nanojuncetea. Itinera Geobotanica 11: 263–290.
  • Camacho A, Borja C, Valero-Garcés B, Sahuquillo M, Cirujano S, Soria JM, Rico E, De La Hera A, Santamans AC, García De Domingo A, Chicote A, Gosálvez RU (2009) 3170* Lagunas y charcas temporales mediterráneas (*). In: VV.AA. Bases ecológicas preliminares para la conservación de los tipos de hábitat de interés comunitario en España. Madrid: Ministerio de Medio Ambiente, y Medio Rural y Marino, 87 pp.
  • Cavara F (1899) Di una Ciperacea nuova per la Flora europea (Cyperus aristatus Rottb. var. Böckeleri Cav. ) Atti dell’Istituto Botanico dell’Università di Pavia 2(5): 23–28.
  • Cochard A, Guitton H (2014) Sortie phytosociologique sur les végétations du lit mineur de la basse vallée de la Loire. ERICA 27: 57–68.
  • Corillion R (1971) Observations sur les végétations des sables du lit mineur de la Loire en Anjou, Basse Loire. Bulletin Mayenne-Sciences 143–175.
  • Costea M, Weaver SE, Tardif FJ (2005) The biology of Invasive Alien Plants in Canada. 3. Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea and Tardif. Canadian Journal of Plant Sciences 85(2): 507–522. https://doi.org/10.4141/P04-101
  • Crisanti MA, Taffetani F (2015) Diachronic analysis of variations induced on the flora and vegetation of river ecosystems bay actions taken to reduce the risk of flooding. Case study of the River Chienti (central Adriatic, Italy). Plant Sociology 52(1): 41–64.
  • Ditětova Z, Ditě D, Letz DR, Eliaš P jun (2016) New records of rare species on exposed river banks and pools in southern Slovakia. Thaiszia 26(1): 57–75.
  • Dubina DV, Dziuba TP, Davydov DA, Emelyanov S (2015) Contemporary status of syntaxonomy and current tasks of the research on pioneer vegetation in Ukraine. Ukrainian Botanical Journal 72(6): 527–541. https://doi.org/10.15407/ukrbotj72.06.527
  • EGPB [Ente di Gestione per i Parchi e la Biodiversità Emilia Centrale] (2013) Sito IT 4030011 Casse di espansione del Secchia: Quadro conoscitivo. Programma di sviluppo rurale dell’Emilia-Romagna 2007/2013.
  • Felzines JC, Loiseau JE (2005) Les groupements fluviatiles des Bidentetea de la Loire moyenne, du bas Allier et de la Dordogne moyenne. Modifications apportées à la synsystématique de la classe des Bidentetea. Bulletin Societé Botanique du Centre-Ouest n.s. 36: 159–204.
  • FLA [Fondazione Lombardia per l’Ambiente] (2008) Habitat di interesse comunitario in regione Lombardia. In: Atlante dei SIC della Lombardia. Isabel Litografia, Gessate (MI).
  • de Foucault B (2013a) Contribution au prodrome des végétations de France : les Isoëtetea velatae de Foucault 1988 et les Juncetea bufonii de Foucault 1988 («Isoëto-Nanojuncetea bufonii») (Partie 1). Journal Botanique Societé Botanique de France 62: 35–70.
  • de Foucault B (2013b) Contribution au prodrome des végétations de France : les Isoëtetea velatae de Foucault 1988 et les Juncetea bufonii de Foucault 1988 («Isoëto-Nanojuncetea bufonii») (Partie 2). Journal Botanique Societé Botanique de France 63: 63–109.
  • Galasso G, Banfi E [Eds] (2015) 302. Cyperus odoratus L. In: Notulae ad plantas advenas Longobardiae spectantes: 5 (263–310). Pagine Botaniche 38: 40–48.
  • Galasso G, Conti F, Peruzzi L, Ardenghi NMG, Banfi E, Celesti-Grapow L, et al. (2018) An updated checklist of the vascular flora alien to Italy. Plant Biosystems 152(3): 556–592. https://doi.org/10.1080/11263504.2018.1441197
  • Gerber E, Krebs C, Murrell C, Moretti M, Rocklin R, Schaffner U (2008) Exotic invasive knotweeds (Fallopia spp.) negatively affect native plant and invertebrate assemblages in European riparian habitats. Biological Conservation 141(3): 646–654. https://doi.org/10.1016/j.biocon.2007.12.009
  • Govaerts R, Simpson DA (2007) World Checklist of Cyperaceae. Sedges: 1–765. The Board of Trustees of the Royal Botanic Gardens, Kew.
  • Janssen JAM, Rodwell JS, Garcia Criado M, Gubbay S, Haynes T, Nieto A, et al. (2016) European Red List of Habitats Part 2: Terrestrial and freshwater habitats. European Commission, 38 pp.
  • Jasprica N, Caric M, Batistic M (2003) The Marshland Vegetation (Phragmito-Magnocaricetea, Isoeto-Nanojuncetea) and Hydrology in the Hutovo Blato Natural Park (Neretva River Delta, Bosnia and Herzegovina). Phyton 43(2): 281–294.
  • Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošik V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, and 16 others (2008) Alien Flora of Europe: species diversity, temporal trends, geographical patterns and research neEds Preslia 80: 101–149.
  • Lastrucci L, Landucci F, Gonnelli V, Barocco R, Foggi B, Venanzoni R (2012) The vegetation of the upper and middle River Tiber (Central Italy). Plant Sociology 49(2): 29–48.
  • Lastrucci L, Bonari G, Angiolini C, Casini F, Giallonardo T, Gigante D, Landi M, Landucci F, Venanzoni R, Viciani D (2014) Vegetation of Lakes Chiusi and Montepulciano (Siena, central Italy): updated knowledge and new discoveries. Plant Sociology 51(2): 29–55.
  • Lastrucci L, Dell’Olmo L, Foggi B, Massi L, Nuccio C, Vicenti G, Viciani D (2017) Contribution to the knowledge of the vegetation of the Lake Massaciuccoli (northern Tuscany, Italy). Plant Sociology 54(1): 67–87.
  • Linnaeus C (1756) Centuria II Plantarum: 5. Edit. L.M. Höjer, Uppsala.
  • Marconato E, Artolozzi S, Busatto T (2014) Carta ittica della provincia di Venezia 2014-2019: Studio per la Valutazione d’Incidenza ai sensi della Dir. 92/43/CEE. Aquaprogram S.r.l.
  • Masin R, Pellizzari M, Alessandrini A, Verloove F (2015) Segnalazioni floristiche venete: 510: Cyperus odoratus L. Natura Vicentina 18: 76–77.
  • Matsunaka S (1983) Evolution of rice weed control practices and research: world perspective. Proceedings of the 1981 Conference on Weed Control in Rice. Laguna (Philippines), International Rice Research Institute, 5–17.
  • Neacşu A, Arsene GG (2017) Pioneer vegetation on water shores (Bidenti-Polygonetum hydropiperis and Echinochloo-Polygonetum lapathifolii) in the Romanian Banat. Research Journal of Agricultural Science 49(3): 122–135.
  • van Oorschot M, Kleinhans MG, Geerling GW, Egger G, Leuven RSEW, Middelkoop H (2017) Modeling invasive alien plant species in river systems: interaction with native ecosystems engineers and effects on hydro-morphodynamics processes. Water Resources Research 53(8): 6945–6969. https://doi.org/10.1002/2017WR020854
  • Pellizzari M (2009) La vegetazione del Po ferrarese da Porporana all’Isola Bianca. Quaderni Stazione Ecologia civico Museo Storia naturale Ferrara 19: 49–80.
  • Peruzzi L, Pierini B, Tison JM (2008) 1437 Cyperus glomeratus L. Notulae alla checklist della flora vascolare italiana, 5. Informatore Botanico Italiano 40(1): 103.
  • Petrik P (2003) Cyperus eragrostis – a new alien species for the Czech flora and the history of its invasion of Europe. Preslia 75: 17–28.
  • Pignatti S [Ed.] (2017-2018) Flora d’Italia. 4 voll. Edagricole, Bologna.
  • Pignatti S, Menegoni P, Pietrosanti S (2005) Bioindicazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia 39: 3–97.
  • Raunkiaer CC (1934) The life forms of plants and statistical geography. Clardeon, Oxford, 632 pp.
  • Renaux B (2014) Caractérisation des gazons amphibies vivaces des Littorelletea uniflorae en Auvergne (3110 et 3130 p.p. ) Direction régionale de l’environnement, de l’aménagement et du logement, 43 pp.
  • Rennwald E [Ed.] (2000) Verzeichnis der Pflanzengesellschaften Deutschlands mit Synonymen und Formationseinteilung. Schriftenreihe für Vegetazionskunde 35: 121–391.
  • Richardson DM, Pysek P (2006) Plant invasions: merging the concepts of species invasiveness and community invasibility. Progress in Physical Geography 30(3): 409–431. https://doi.org/10.1191/0309133306pp490pr
  • Rivas-Martínez S, Costa M, Castroviejo S, Valdés E (1980) Vegetaciòn de Doñana (Huelva, España). Lazaroa 2: 5–189.
  • Rivas-Martinez S, Saenz SR, Penas A (2011) Worldwide bioclimatic classification system. Global Geobotany 1: 1–634.
  • Sartori F, Bracco F (1995) Flora e vegetazione del Po. Accademia Scienze Torino Quaderni 1: 139–191.
  • Sartori F, Bracco F (1996) Present vegetation of the Po plain in Lombardy. Allionia 34: 113–135.
  • Schneider-Binder E (2020) The habitats along the Upper Danube in Germany and changes to them induced by human impacts. In Banaduc D, Curtean-Banaduc A, Pedrotti F, Cianfaglione K, Akeroyd JA (Eds) Human impact on Danube watershed biodiversity in the XXI Century. Springer Nature, Switzerland, 39–47. https://doi.org/10.1007/978-3-030-37242-2_3
  • Shankman D (1996) Stream channelization and changing vegetation patterns in the U.S. coastal plain. Geographical Review, 86(2): 216–232. https://doi.org/10.2307/215957
  • Stankovic I, Janauer GA, Pall K, Alegro A, Rimac A (2015) Danube macrophytes. Danube News 31: 11–13.
  • Šumberová K (2013) Formalised classification of the annual herb vegetation of wetlands (Isoëto-Nano-Juncetea class) in the Czech Republic and Slovakia (Central Europe). Phytocoenologia 43(1–2): 13–40.
  • Tisi A, Minuzzo C, Siniscalco C, Caramiello R (2007) La vegetazione acquatica e palustre della zona dei “Cinque laghi” d’Ivrea. Rivista Piemontese Storia Naturale 28: 87–126.
  • Tornatore F (2008) Qualità ecologica e quantità delle acque del fiume Po. Autorità di Bacino del fiume Po, Parma: Progetto strategico speciale Valle del fiume Po: VAS – fase di consultazione. Workshop di approfondimento territoriale – ambito emiliano. Piacenza, 26/09/2008.
  • Trpin D, Vres B, Seliskar A (1996) Flora in vegetacija ribnikov juzne avstrijske Stajerske. Hladnikia 6: 17–38.
  • Turitto O, Cirio CG, Bossuto P, Viale F (2004) Quadro conoscitivo sulle rotte nell’arginatura maestra del Po documentate a partire dal 1800 lungo il percorso fluviale da Zerbo (PV) a Serravalle (FE): Rapporto finale. CNR, Torino.
  • Verloove F (2014) A conspectus of Cyperus s.l. (Cyperaceae) in Europe (incl. Azores, Madeira and Canary Islands), with emphasis on non-native naturalized species. Webbia 69(2): 179–223. https://doi.org/10.1080/00837792.2014.975013v
  • Wisskirchen R (1995) Verbreitung und Ökologie von Flussufer-Pioniergesellschaften (Chenopodion rubri) im mittleren und westlichen Europa. Dissertationes Botanicae 236: 1–376.
  • Zhao F, Yan S, Li M, Liu X, Zhang X, Cao Y, Zhao H (2019) Adaptative strategies of structures that enhance invasion in Sicyos angulatus. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47(4): 1323–1330. https://doi.org/10.15835/nbha47411596

Appendixes

Appendix I – Site and date of the phytosociological relevés (WGS 84)

Rels. 1-17: 08/08/2016; Pontelagoscuro, FE; 44°53'08.65N, 11°37'37.31E.

Rels. 18-22: 08/08/2016; S. Maria Maddalena, RO; 44°53'27.07N, 11°36'00.31E.

Rels. 23-27: 10/08/2016; Francolino, FE; 44°53'41.31N, 11°38'44.29E.

Rels. 28-31: 10/08/2016; Guarda Ferrarese, FE; 44°57'40.63N, 11°46'53.75E.

Rels. 32-39: 16/08/2016; Between Polesella and Canaro, RO; 44°56'22.19N, 11°44'28.77E.

Rels. 40-41: 16/08/2016; Guarda Veneta, RO; 44°58'37.86N, 11°48'00.81E.

Rels. 42-44: 25/08/2016; Zocca, FE; 44°55'40.14N, 11°44'30.25E.

Rels. 45-53: 25/08/2016; Cologna, FE; 44°58'24.80N, 11°55'01.79E.

Rels. 54-60: 25/08/2016; Coronella di Cologna, FE; 44°58'23.23N, 11°52'54.72E.

Rels. 61-62: 30/08/2016; Stienta, RO; 44°56'22.94N, 11°31'52.45E.

Rels. 63-65: 30/08/2016; Gaiba (Surchio W), RO; 44°56'23.50N, 11°29'25.68E.

Rels. 66-68: 30/08/2016; Gaiba sand bank, RO; 44°56'24.36N, 11°29'38.69E.

Rels. 69-72: 30/08/2016; Gaiba (Surchio E), RO; 44°56'26.02N, 11°29'42.84E.

Rel. 73: 05/09/2016; Crespino, RO; 44°58'34.37N, 11°52'32.52E.

Rels. 74-83: 05/09/2016; Canalnovo, RO; 44°58'54.23N, 11°56'40.00E.

Rel. 84: 05/09/2016; Villanova Marchesana, RO; 44°59'19.04N, 11°57'50.18E.

Rels. 85-86: 05/09/2016; Panarella, RO; 44°58'54.36N, 12°04'29.79E.

Rels. 89-101: 12/09/2016; Porporana (oxbow W), FE; 44°56'01.32N, 11°27'54.69E.

Rels. 102-103: 12/09/2016; Porporana riva Po, FE; 44°56'03.30N, 11°27'46.64E.

Rels. 104-118: 12/09/2016; Porporana (oxbow E), FE; 44°56'06.64N, 11°28'28.58E.

Rels. 119-122: 29/09/2016; Quatrelle, MN; 44°57'16.84N, 11°25'28.87E.

Rels. 123-136: 29/09/2016; Sermide, MN; 45°00'24.66N, 11°18'21.31E.

Appendix II – Sporadic species

Table 1: Cyperetum esculenti

Rel. 84: Bidens vulgata 1; Artemisia annua +.

Rel. 49: Eclipta prostrata 1; Lycopus europaeus 1.

Rel. 67: Persicaria maculosa 2.

Rel. 21: Polygonum arenastrum +.

Rel. 47: Digitaria sanguinalis 2; Paspalum distichum 2; Cyperus odoratus 1.

Table 2: Amaranthus tuberculatus -phytocoenon

Rel. 31: Amaranthus blitum +.

Rel. 30: Abutilon theofrasti +; Heteranthera reniformis +.

Rel. 40: Atriplex prostrata 1.

Rel. 45: Urtica dioica 1; Veronica cfr. peregrina +.

Rel. 24: Phalaris arundinacea 1.

Rel. 3: Phragmites australis +.

Rel. 43: Polygonum arenastrum +.

Rel. 44: Convolvulus sepium 1.

Rel. 59: Eragrostis pectinacea 2.

Table 3: Cyperetum glomerato-micheliani

Rel. 117: Bidens cernua 3; Ludwigia peploides 2; Eclipta prostrata 1.

Rel. 85: Cyperus flavescens 1; Urtica dioica 1; Amorpha fruticosa (pl.) +; Ranunculus sceleratus +.

Rel. 120: Cyperus difformis 1; Veronica beccabunga +.

Rel. 107: Mentha aquatica +.

Rel. 108: Mentha aquatica 1.

Rel. 69: Mollugo verticillata +; Persicaria maculosa +.

Rel. 89: Rorippa sylvestris 2.

Rel. 105: Alisma plantago-aquatica +; Heteranthera reniformis +; Veronica anagallis-aquatica +.

Rel. 99: Veronica anagallis-aquatica +.

Rel. 71: Humulus japonicus 1.

Rel. 42: Persicaria maculosa 1.

Rel. 58: Phalaris arundinacea +; Rubus caesius +.

Rel. 57: Phalaris arundinacea 1.

Rel. 46: Chenopodium album 1; Digitaria sanguinalis 1; Solanum nigrum 1.

Rel. 90: Rorippa sylvestris +.

Rel. 52: Digitaria sanguinalis 2; Cyperus eragrostis 1.

Rel. 68: Digitaria sanguinalis 2; Mollugo verticillata 1.

Rel. 136: Mollugo verticillata 1.

Rel. 134: Bidens tripartita 1.

Rel. 11: Juncus effusus 1; Lythrum salicaria 1; Paspalum distichum 1; Phalaris arundinacea 1; Populus canadensis (pl.) 1.

Rel. 12: Lythrum salicaria 2; Phalaris arundinacea 2; Paspalum distichum 1.

Rel. 10: Populus canadensis (pl.) 1.

Rel. 135: Urtica dioica +.

Rel. 125: Urtica dioica +.

Rel. 122: Persicaria maculosa +.