Corresponding author: Benoît Vincent ( benoit.vincent@coris.ovh ) Academic editor: Daniela Gigante
© 2021 Benoît Vincent.
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation:
Vincent B (2021) What has become of our cenosis? For a renewed cenology. Plant Sociology 58(2): 29-40. https://doi.org/10.3897/pls2021582/03
|
An opinion paper that tries to show that the concept of cenosis has been withheld over time, seeks to understand the reason why, and aims to rehabilitate it. Different definitions of biological and ecological communities types are then proposed. Finally, the paper presents some possible paths for a renewed science of cenosis (or cenology, or biocenotics).
biocenotics, biocoenotics, biotic community, cenosis, coenosis, epistemology, phytosociology
‘These ambiguities, redundancies and deficiencies remind us of those which doctor Franz Kuhn attributes to a certain Chinese encyclopaedia entitled Celestial Empire of benevolent Knowledge. In its remote pages it is written that the animals are divided into: (a) belonging to the emperor, (b) embalmed, (c) tame, (d) sucking pigs, (e) sirens, (f) fabulous, (g) stray dogs, (h) included in the present classification, (i) frenzied, (j) innumerable, (k) drawn with a very fine camelhair brush, (l) et cetera, (m) having just broken the water pitcher, (n) that from a long way off look like flies’ (
In 1950, the French National Centre for Scientific Research (CNRS) organised a congress with 29 participants, including 16 French and 13 (mostly German-speaking) foreigners. This congress can be described as remarkable (
Thus, the symposium presented a peculiar point of view beside the contemporary concept of ecosystem, which would soon become the main one on both sides of the ocean and fundamental in the history of the discipline. As we know, the term ‘ecosystem’ appeared in the pen of the British ecologist Arthur
Be it will or intuition, it was therefore for the organisers and participants of the Paris congress to move away themselves from the ‘ecosystem approach’ and to promote developments from their own point of view, i.e. that of cenology, at the time essentially dedicated to plants, and with the ambition to generalise it to the other great kingdoms of life, animals in particular.
It should be pointed out, as
As Pascal Acot suggests (1994), post-war continental ecology was at the crossroads between three different thoughts:
1. Human ecology, born from a development of Paul Vidal de la Blache's human geography; particularly dynamic in the US (with Chicago school), it gradually declined in sciences, and social sciences, as a subject of widespread suspicion (cf.
2. 'Odumian' ecology, which tended to consider a closed zone of nature environment (typically the lake) as a perfect subject for exchanges of energy and matter studies (see e.g.
3. Phytosociology (which could also be called phytocenology), finally, or description and classification of plant communities, whose roots are twisted in classical phytogeography (Alexander von Humboldt, August Grisebach, Auguste Pyrame de Candolle, and so on) and the old conception of the formation, as a link between a set of vegetation types and a landscape organisation.
Phytosociology took off and quickly became somehow independent of the ecosystem approach, particularly under the impetus of the Station Internationale de Géobotanique Méditerranéenne Alpine (SIGMA, hence the word 'sigmatist') where Josias Braun (soon Braun-Blanquet, originally from Zurich, hence the name of 'Zurich-Montpellier' school
If concepts and methods of phytosociology began to infiltrate zoology in the 1950s, questions about animal communities are obviously much older. Biocenotics (or synecology, as it is also called) was a topic in full swing from the first part of the century (e.g.
When
It seems that the ecosystem replaced the biome; it is defined by the association of a biotope and a biocenosis. As we can see, the word cenosis is part of the concept, but it is relegated at the same level as the biotope – a term that appears to be very difficult to define today.
In fact, what I wish to emphasize when I argue that the ecosystem studies have taken over in ecological science, is that studies on the biotope, considered alone (often confused with ecosystem itself) largely dominate ecology: the observation, the description, the classification of cenosis appear today to be accessory, except for what concerns plants (phytosociology), and practically not considered at all for what concerns animals or other organisms (with few exceptions, like littoral bionomics or rivers cenosis).
It should be noted, moreover, that the biome, which may have become synonymous of formation, i.e. the great bioarchitectures (essentially vegetal, but not only) recurrent on the planetary scale, is no longer directly linked to the communities (vegetal or other) that compose it.
In fact, Braun-Blanquet and his successors would have full opportunity to imagine a classification of plant communities independently of it. The result, at the end of the 1950s, was a complex phytosociological system (which did not call itself phytocenological yet), separated from both ecosystem studies and biomes studies.
The first ambition of cenology should therefore be, on the one hand, to extend the achievements of phytosociology to other living organisms (to re-equilibrate the biotope with its whole biocenosis), and on the other hand, to try to define the articulation between synsystems (already existing with plants, still to come for other organisms) and the classification of biomes: in other words, to articulate biocenology with biogeography
Between the two classifying systems, phytosociology synsystem and phytogeographical classification, thus, some kind of gap exists - which I described as 'quantum jump' (
To achieve these objectives we mentioned above, it is first necessary to define the different concepts of groupings of living beings that are currently used.
There are many way to classify species, and many groups can be proposed. They can be more or less precise, more or less imaginary, more or less arbitrary. We can separate for instance herbivorous from carnivorous animals, or perennials from annuals plants, or black from white animals, or edible from non-edible mushrooms, and even animals that belong to the Emperor from those that broke the pitcher… Clades, communities, assemblages, populations, guilds, associations, synusia, etc.: all these terms exist, are frequently used and are more or less familiar to us, but they are also often mistaken for each others. Thus, many researchers regret the lack of harmony and precision. I shall consider a few examples to try to retrieve consensual definitions and measure why this confusion is still active:
One of these papers (
The independent units, the first grade sets, are, respectively: taxon, community, guild. For the second grade sets: the taxon-community association (A+B) defines an 'assemblage', the community-guild one (B+C) a 'local guild', and the taxon-guild one (A+C) does not have a particular name, but can characterised by the description of its components. Finally, the set composed of the three sets (A+B+C) is, for the authors, the 'ensemble'.
As a synthetic review, it is obvious that several questions need to be asked:
1. Is it true, or sufficient, that only three ‘sets’ are useful, and not less (or more) than three? In what follows, I shall consider that is the case (there is no place here to discuss to a higher detail).
2. In calling the synthesis of the three groups an ‘ensemble’, the authors use a term which, in addition to being vague, is nothing less than rare in ecology, not to say very original.
3. Finally, it seems to me disturbing, on the one hand to designate a set by a void (A+C), and on the other hand to designate another set (B+C) by a name already used elsewhere.
4. Moreover, no account is taken of society, population, community in the sense of ‘settlement’, even crowd, etc., other common terms in ecology, and of course association, cenosis or synusia. How can these problems be solved?
First of all, I propose to keep the term community (what stands for ‘population’ for the authors) for any biological group of organisms, as biological societies, in the
Let’s review the other terms. The two-dimensions community defined by the overlapping of geographic and phylogenetic sets: as far as 'assemblage' is a random grouping of different species, and a vague term as showed by Looijen & van Andel (1999), I think it is not at its right place: the species maybe part of the same clade (as in paleomalacological sense, like in ‘quaternary tufa molluscs assemblage’ studies) but it is not necessary (let’s remind classic intertidal, or underground assemblages). The overlapping of geographic and phylogenetic community is clearly to me what is generally called a 'population' as in ‘a population of hippopotamus’, or ‘of edelweiss’. Therefore, the term 'assemblage' should be reserved for the mere first grade geographical group: there is no phylogenetic and scarce trophic links (in sociology it may refer to crowd or mass, cf.
The second two-dimensions group, defined by both geographical and resourcial sets, is not easy to resume; but there is a French term that fits: 'peuplement', in the English sense of 'settlement' (as in an human sense it refers to a mix of various groups gathered together with an economic link). 'Peuplement' should be literally translated in 'community', which is not usable a second time. It is not very satisfying, but I keep the French term in the diagram.
Let’s consider the third two-dimensions grouping, which is an empty space; this one is defined by both phylogenetic and resourcial sets, and is what I understand exactly as a 'guild'.
So here again, the replacement of terms calls for another word (for the resourcial set alone). But if we want to be very accurate, this metabolic, biologic function reminds of some kind of autoecological setting, as life-form. If acceptable, it would represent the best conceptual bridge between growth-form and life-form sciences (sensu
The new three sets should then be: resourcial > life-form; geographical > assemblage; and phylogenetic > taxon; even if the latter term is correct, I would prefer to use ‘clade’ (and keep 'taxon' in a linguistic sense: the name of a clade, whatever the rank be). Their crossing brings to population, peuplement, and guild.
The last step leads to qualify the set made up of all these elements. A community of organisms linked by phylogeny, sharing the same resources in a given space and time, isn't what we simply call... a cenosis?
To sum up, if we apply the arguments made so far to the Venn diagram of Figure
One should mull things over, but it is hard to see how any community could be separated from one of the three dimensions: they are interconnected at the very root of both individual ‘organism’ and living ‘creature’; it is the matter of their own being.
Communities can be studied at least from three different points of view: the phylogenetic one (cladistic > taxonomy), the spatio-temporal one (chorology and phenology: what we should call territory, considered in a dynamic sense, whose studies could be called 'choriology', on the model of Figure
But I retain that we must consider the cenosis as the real basic-unit of any community of living beings. In clear, there is little chance that any creature is not at least partly linked either to a family, a species, a space and time, or any kind of metabolical function as breathing and feeding. What I mean is that there is little chance that, in ecological studies, we easily escape a cenological implication, where ecological elements (synspecies) share the same ‘household’, and therefore the same clades, the same spatio-temporal dimensions and the same resources.
Science can obviously speak about one of the second-grade sets, and that is what exactly happens, and that is very useful for the plain knowledge of life beings. But it is also true that the constant difficulty of defining and naming these different communities may indicate certain problems of conceptual permeability. First, it is possible that ‘groupings’ overlap is due to organisms overlaps too or, to put it better, that individuals share different groups contemporary. This is the great problem of heterogeneity and boundaries pointed out by Looijen & van Andel (1999). That is: there is a distance between concrete group of individuals and abstract communities (and that is why these authors prefer to speak about ‘community individuals’, which is only part of the solution). Since groups, as any classification types, are a self-oriented, mind-constructed reality, confusion must be admitted as part of the problem: and the articulation between concrete and abstract realities is part of the question phytosociology fronts since its debuts.
Maybe the problem stands in the conceptual lack of rigour shown by scientists and researchers, as asked by the philosopher
What is much less emphasised, however, and which is spectacularly obvious in the diagram (apart from the game of musical chairs between notions) is, above all, the total absence of one of them, the loser of the game: cenosis.
Once we consider the cenosis as a logical minimal unit of ecology (rather than ecosystem), indeed, it’s still quite surprising, and extremely revealing, to note that the field of cenology has been gradually evacuated to the point where the term cenosis has become practically a rare and endangered one - whereas it seems to me to be the very foundation of ecology itself!
Another noticeable clue is given by scientists' bibliographies: if specialists of the topic still refer to Clements, Gleason and Tansley battles, the whole school of the 1930s, the enormous continental European production of the 1950s is almost absent from the radar and nobody talks about great thinkers like Rioux, Rabeler or Mörzer Bruyns.
So, why have ecologists gradually abandoned the terms 'cenology', 'cenotics' and 'cenosis' (or have left them to botanists, which is the same thing)? Is it simply because of the confusion between roughly equivalent notions that they have gradually been marginalised? Probably not, since the others remain, on the contrary, prominently alive. It cannot neither be because the term itself is too complex. I therefore assume that one reason may be epistemological. What displeases or frightens the scientist is the part of subjectivity and interpretation in the observation, description and classification of life which formed the core of natural sciences in the past (until the 1970s) (
Following again
And the process is not over (as we see with old debates about phytosociology). In a recent issue of the journal Naturae, of the Paris Natural History Museum (MNHN), Yves Meinard and Gilles Thébaud even advised researchers, managers and naturalists, and I quote, ‘avoid using syntaxonomic identifications’ (
If we agree that cenosis is the 'true' minimal unit of ecology, it remains to review the various conceptual problems of such an assertion. Indeed, very often, we do not measure the practical consequences of small theoretical arrangements, and we find ourselves either with tools that are unusable in the field, or with vague concepts that are all more or less synonymous.
I specify that these are reflections on the fly, and that I do not go into detail about these problems, each of which could be the subject of detailed and referenced notes. Especially, it is up to each specialist to define their own methods, the limits of their expertise field, and improve the rightful and useful tools directly on the ground - as I tried to do with malacocenosis problems in
Cenosis is a grouping within a clade. It is up to the researcher decide the clade in which he operates; phytosociology operates within the Viridiplantae clade; generally it leaves apart algae, and sometimes also ferns. We sometimes find cenosis associating lichens and annual plants: as usual, this is not problematic since this choice is well defined beforehand but, technically, it seems as risky as associating frogs with fish or mammals (even if they are all tetrapods) (see Berg et al. 2020).
This is no small problem because, even within the same clade, molluscs for example, further subdivisions can be found: Cephalopods can be easily distinguished from Gastropods; but in the latter, is it necessary to ask whether the pulmonates should be separated from the operculates? A priori no, but from another point of view, their way of life is totally different as concerns water resources! If we are interested in fishes, should we separate Chondrichthyes from Osteichthyes? A priori yes, but don't they form fairly a mixed group? And what about Cetaceans?
In fact, we can therefore ask ourselves whether we should not operate on the cenosis based on the notion of biological type (sensu Raunkier e.g. 1934)? This would mean, for example, that there would be groupings roughly comparable to strata or layers (for vegetation), but considered from an ecological point of view. This is where synusia comes into play, carried and defended by the alternating current of synusial phytosociology (
Many studies about zoocenosis try to link those zoocenosis to phytocenosis, but most of them conclude that it is not that easy, if not impossible, or even foolish. Indeed, 1) there are far fewer animal species in most clades (except arthropods) and it is probably impossible to get the same degree of precision such as in phytosociology; 2) many animal species are either extremely endemic or very common; and 3) big cenosis like certain vegetation types are at the same time inhabitants and habitats (for other cenosis): they are at the same time contents and containers – which is also the case for most organisms in relation to the world of bacteria.
There are two consequences of this: first, that all synsystems should be built independently from the others, at least at the beginning of the research; second, that each system can be linked to each other to reach, at the end, but in another dimension, the biogeographical one.
Philippe Julve has a habit of telling his interlocutors that phytosociology is like the music of Bach or Mozart: it is useless. This is a beautiful non-definition, because not only it insists on the arbitrary (i.e. linguistic, i.e. human) character of phytosociology as a classification, like any classification; but it also underlines the subjective part of the practice, the side that can be assimilated to a know-how or a talent (Gisin himself speaks of ‘flair’, cf.
Phytosociology is both an objective-subjective, theoretical-practical apparatus that is able to account for all the ecological dimensions of any living beings. If we want to speak of 'biocenotics', we will recall its main foundations and applications (Figure
In order to reconnect with the original definition of plain ecology, we must define our topic.
'Biocenotics' (also called 'biocenology' or 'synecology') seeks to observe and describe ecological communities called cenosis, based on their recurrent specific composition, on a given scale of a given clade; those cenosis can be structured within the clade in an integrative system ('synsystem'), with specific ranks, from microhabitat and synusia up to the higher ones.
'Ecobiocenotics' integrates the system of biology, according to Gams, Du Rietz, etc.
It relies on biogeography, which describes the great formations, or biomes. There is a meeting point (which is a tipping point) between the two, and it usually concerns what many ecologists or botanists call 'formation' and what I call elsewhere (
It is thus also a synthesis (
I. Science of the single organism = Idiobiology | II. Science of organism communities | |||
static | dynamic | static | dynamic | |
A. Relationship of elements to each others and to environment | morphology | 1. physiology 2. autoecology | qualitative and quantitative analysis of the community | 1. symphysiology (= science of correlations) 2. synecology s.str |
B. Division of the multitude | morphological systematics | autoecolgical systematics | biocenological systematics | synecological systematics |
(topographical systems) | (ecological systems) | |||
C. Geographical distribution | science of species spatial distribution = autochorology | science of species movements =epiontology s.str. | synchorology | science of local successions |
D. Temporal distribution | stratigraphics = autochronology | phylogenetics | synchronology | science of temporal successions |
I will conclude with a few words about the spirit of the methods, which each cenologist can adapt according to the considered clade. It is inspired by phytosociology, which duly and regularly improved it. It is a structuralist method, that involves different stages: field and laboratory, analysis and synthesis, objective and subjective phases. This last point should not be surprising: the whole part of creativity, but also of imagination, but finally of interpretation requires this flexibility and sharpness that only the human eye and brain are able to provide (Figure
Thus, on one hand, observation, inventory, sorting and data analysis, lead on an interpretation, a sort of a novelization that allows to apprehend the biological dynamics in progress, the interactions between the different cenosis, or between species within the cenosis. On the scale of a natural site, the cenosis provides a robust insight into the issues at stake, as well as the effects of possible human interventions. Then, monitoring is able to enter.
It's been a practical problem that led me to consider that biocenotics mysteriously disappeared, and I assume it is a pity; I argue we should try to revivify it, and this text tried to elaborate a theoretical statement. Its cousin/counterpart, yet cited (2021b), on malacocenosis, to which I would like to refer, stated that, apart from epistemological effervescence, direct applications seem obvious, not only from a knowledge point of view, but also in a conservation approach. We hope the recourse of biocenology/biocenotics will feed ecological studies, both in functional, monitoring and evolutionary ecology.
I would like to thank all those who contributed to my reflection, particularly Frédéric Bouffard, Emmanuel Catteau and Philippe Julve.
I thank the editor and the three reviewers for their support and great helping.