Print
Contribution to the knowledge of Mediterranean wetland vegetation: Lemnetea and Potamogetonetea classes in Western Sicily
expand article infoOrazio Caldarella, Lorenzo Lastrucci§, Rossano Bolpagni|, Lorenzo Gianguzzi
‡ Unaffiliated, Palermo, Italy
§ Natural History Museum of the University of Florence, Firenze, Italy
| University of Parma, Parma, Italy
¶ University of Palermo, Palermo, Italy
Open Access

Abstract

The freshwater aquatic vegetation of the Lemnetea and Potamogetonetea classes in Western Sicily was surveyed and analyzed. 85 lakes and small pools were investigated collecting 147 phytosociological unpublished relevés to integrate the very scarce available data (only 3 relevés). By applying statistical analyses on abundances data and on the bases of physiognomy and dominant species, two alliances (Lemnion minoris and Stratiotion) and four different coenoses have been identify for the Lemnetea class; while 11 associations, assigned to two orders (Potamogetonetalia pectinati and Callitricho hamulatae-Ranunculetalia aquatilis) and four alliances (Potamogetonion, Nymphaeion albae, Ranunculion aquatilis and Ranunculion omiophyllo-hederacei) have been recognized for the Potamogetonetea class. A new association (Junco bufonii-Ranunculetum omiophylli ass. nov.) and a new subassociation (Ranunculetum peltati ranunculetosum rionii subass. nov.) have been proposed, whereas other six vegetation units were found to be new for the study area (Potamogetono-Ceratophylletum submersi, Potamogetonetum pusilli, Ranunculetum aquatilis, Ranunculetum peltati and Ranunculetum rionii, Lemno-Callitrichetum obtusangulae). For all the coenoses recognized, new insights on the floristic composition, syntaxonomy, synphiognomy, synecology and synchorology are reported, offering a reasoned overview of the aquatic vegetation of the western sector of the main Mediterranean island.

Keywords

aquatic vegetation, biological conservation, Mediterranean islands, phytosociology, plant community classification, Sicily, small standing-water ecosystem

Introduction

Inland small standing-water ecosystem act as preminent hotspots for biodiversity although they are globally threatened (Bolpagni et al. 2019). Reclamation, eutrophication, fragmentation, and alien species invasion along with the effects of climate change are just some of key threats affecting freshwaters and wetlands (Benavent-González et al. 2014; Angiolini et al. 2017; Reid et al. 2019). Indeed, freshwater biota, and macrophytes in particular, are counted among the biological components that are most at risk of extinction under Anthropocene conditions (Bolpagni et al. 2018; Dudgeon 2019). This is especially true for the Mediterranean islands which are the backbone of one of the most diverse biodiversity-rich areas worldwide (Cañadas et al. 2014).

To this respect, Sicily – the largest Mediterranean island – is a key case study due to the intrinsic rarity of humid habitats and macrophytes (Troìa & Lansdown 2016; Minissale et al. 2017; Romanov et al. 2019). Inland small standing-water ecosystem are normally found in small depressions from the low hills to the mountainous areas (Caldarella 2014), interspersed within different land use types (e.g., agricultural areas, pastures, prairies, garrigue, forest clearings, wooded environments). Furthermore, they are under the control of a multiplicity of local environmental (e.g., exposure, altitude, shading, surrounding vegetation, hydroperiod, water supply) and anthropogenic drivers (e.g., trampling, water withdrawals, reshaping of banks).

This kind of habitats has always generated interest from botanists. Indeed, in Sicily the wetland flora investigation dates back to the dawn of floristic research (Gussone 1827-1828, 1842-1845; Lojacono-Pojero 1888-1909; Giardina et al. 2007). Despite this, the knowledge of wet vegetation, particularly the strictly acquatic one, remains scarce and fragmented, often limited to few contributions referring to single biotopes. Some examples of this are the “Gorghi Tondi” and the Preola Lake in the Trapani area (near Mazzara del Vallo; Suppl. material 2, Figure S2f) (Brullo and Ronsisvalle 1975), the wetlands of the “Bosco del Cappelliere” in the surroundings of Palermo (Gianguzzi and La Mantia 2004; Caldarella et al. 2013b; Caldarella 2014; Caldarella and Gianguzzi 2018), the lakes of Serradifalco and “Bosco” in the Caltanissetta area (Marcenò and Raimondo 1977), the “Gorghi” of Carcaci and Carcaciotto (Suppl. material 2, Figure S3a) on the Sicani Mountains (Gianguzzi et al. 2007), and the “Gorgo di Monte Cofano” (Gianguzzi and La Mantia 2009; Suppl. material 2, Figure S1e).

To fill this knowledge gap, the present work concerns the phytosociological survey on the aquatic coenoses of the Lemnetea and Potamogetonetea classes, carried out through numerous unpublished relevés, in addition to the scarce available data (only 3 relevés). The survey involved the most representative biotopes of the Western Sicily (85 different lakes and small freshwater ponds and pools), distributed from the coastal area to the mountain belt, spread over various geological formations and with different hydroperiods.

Materials and methods

Study area

The study area comprises the western sector of Sicily, including the provinces of Trapani, Palermo, Agrigento, and Caltanissetta (Figure 1). The target sites (85) embrace water bodies with different hydroperiods (permanent vs temporary), and origin (natural, semi-natural and artificial) (Suppl. material 1, Table S1).

Figure 1. 

The study area with distribution of investigated habitats (see Supplementary material 1: Table 1).

From a biogeographical point of view, this area is part of the Italo-Tyrrhenian Province and of the Sicilian Subprovince (Brullo et al. 1995), encompassing the “Drepano-Panormitano” (Trapani, Palermo, Trabia and Sicani Mts), “Madonita” (Madonie Chain), and the “Agrigentino” (Chalky-sulphurous series of Sicily inlands; Musarella et al. 2018) districts, and various other intermediate (e.g., Bosco Granza, Rocca Busambra) or border (e.g., “Sciare of Mazara”, Carboj River and the Mandrarossa Stream catchments) areas.

Most of studied biotopes fall within the Tyrrhenian orographic ridge, characterized by limestone, limestone-dolomite, and dolomite substrates whose formation dates back from the Mesozoic to Tertiary periods. Moving from the Madonie Chain towards west, altitudes tend to decrease up to the Trapani Mts (from 1979 m a.s.l. of the Pizzo Carbonara to the 751 m a.s.l. of the Monte Erice), with internal peaks including the Rocca Busambra (1613 m a.s.l) and the Sicani Mts with the Monte Cammarata (1578 m a.s.l) (Figure 1). The Agrigento and Nisseno sectors are instead part of an evaporite complex which includes soils of the Chalky-sulphurous Formation of the upper Miocene (Musarella et al. 2018).

The study area is characterized by a Mediterranean macroclimate, with three different subtypes: xeric-oceanic, pluviseasonal-oceanic and Temperate/submediterranean (Rivas-Martínez 2004). As detailed by Gianguzzi et al. (2015b), adopting the classification by Rivas-Martínez and Rivas-Saenz (1996-2020), the following thermotypes may be recognized: infra-Mediterranean (with an annual average temperature of 18-20 °C), thermo-Mediterranean (16-18 °C); meso-Mediterranean (13-16 °C) and supra-Mediterranean (8-13 °C). Concerning the rainfall regimes, the study area (Caldarella et al. 2013a; Gianguzzi et al. 2011a, 2011b, 2014a, 2014b, 2015a, 2015b, 2016; Gianguzzi and Bazan 2019; Guarino and Pasta 2017; Romano et al. 2006; etc.) falls within the following ombrotypes: dry (with an annual average precipitation of 350-600 mm), subhumid (600-1000 mm), and humid (> 1000 mm).

Phytosociological, synecological and syndinamical analyses

The aquatic vegetation was studied following the phytosociological method of the Zurich-Montpellier school (Braun-Blanquet 1964), as later modified by other authors (e.g., Rivas-Martínez 2005; Biondi 2011). 147 unpublished relevés were carried out in the period between 2012-2020, subsequently compared with the few phytosociological relevés available in literature. The relevés matrix, transformed according to the Van der Maarel (1979) scale, was converted into a distance matrix by the vegdist function of the vegan package (Oksanen et al. 2020) using the Euclidean distance as an index of distance. Subsequently, the distance matrix was subjected to cluster analysis using the hclus function of R (R Core Team, 2021) applying the Ward method. Subsequent arrangement of phytosociological tables (see Tables 114) has allowed the identification of the plant communities that have been classified according to the phytosociological syntaxonomic system, and the “International Code of Phytosociological Nomenclature” (Theurillat et al. 2020).

The nomenclature of the syntaxa of higher rank (alliances, orders, and classes) is in accordance with Mucina et al. (2016), with some references also to the “Vegetation Prodrome of Italy” (Biondi et al. 2014). The attribution of the coenoses at the association level o follows mainly Rivas-Martínez et al. (2001, 2002) and Chytrý (2011), as well as other specific works duly cited in the text. The identification, nomenclature and biological forms of the plant species follow Pignatti (2017-2019). Biological forms are abbreviated as follows: I nat = free-floating hydrophyte; I rad = rooted hydrophyte; G rhiz = rhizomatous geophyte; H scap/caesp/bienn = scapose/caespitose/biennial hemicryptophyte; T scap/caesp/rept = scapose/caespitose/reptant hemicryptophyte.

For each investigated community, the list of Diagnostic taxa (% constancy), Syntaxonomic notes, a Short description with information on Syndynamism and Bioclimate in Sicily, Synchorology, and Local distribution were provided.

Results and Discussion

The dendrogram obtained from the cluster analysis (Figure 2) allowed the identification of 4 plant communities belonging to the Lemnetea class (Table 15) and 11 to the Potamogetonetea class (Table 16), respectively, as detailed in the syntaxonomical scheme.

Figure 2. 

Dendrogram obtained from the cluster analysis of relevés showing the associations of the Lemnetea and Potamogetonetea classes: 1) Lemnetum minoris; 2) Lemnetum gibbae; 3) Lemna minuta community; 4) Potamogetono-Ceratophylletum submersi; 5) Potamogetonetum natantis; 6) Potamogetonetum pusilli; 7) Potamogetonetum pectinati; 8) Groenlandietum densae; 9) Ranunculetum rionii; 10) Ranunculetum aquatilis; 11a) Ranunculetum peltati subass. typicum; 11b) Ranunculetum peltati subass. ranunculetosum rionii; 12) Lemno-Callitrichetum obtusangulae; 13) Callitriche stagnalis community; 14) Junco bufonii-Ranunculetum omiophylli.

The clusters of associations are closely overlapped each other at the upper levels, as many species are largely shared between relevés of the various communities investigated. This is mainly due to the strong spatial overlap of coenoses that tend to colonize thin concentric strips along the shoreline of the studied water bodies. Despite this, cluster fidelity is 97%, as only 4 relevés belonging to two clusters (10, Ranunculetum aquatilis, and 12 Lemno-Callitrichetum obtusangulae) have been subjectively classified exclusively based on physiognomy and dominant species.

1. Lemnetum minoris von Soó 1927 (Tables 1 and 15)

Diagnostic taxa (% constancy) – Lemna minor L. (100%, dominant).

Syntaxonomic note – Concerning the communities dominated by L. minor L., several authors agree in identifying a basic unit with an “association value” (Géhu and Pedrotti 1992; Schratt 1993; Rivas-Martínez et al. 2001). However, other authors, including Müller (1977), Scoppola (1982), and Pott (1995), do not find the ground for the definition of a specific syntaxon due to the wide ecological and biogeographical values of this species (Sburlino et al. 2004). The Lemnetum minoris is rather common in Europe including the Mediterranean area (Ninot et al. 2000; Brullo et al. 2002; Šumberová 2011a; Felzines 2012; Zervas et al. 2020). The dominant species develops in several habitat types, often forming mono-paucispecific stands (Maiorca et al. 2007; Sburlino et al. 2004; Šumberová 2011a; Bolpagni and Piotti 2015; Spampinato et al. 2019). The association can be found on marginal zone of still and nutrient-rich freshwater bodies, in very shallow sectors (Zervas et al. 2020).

Short description – Acropleustophytic aquatic community dominated by L. minor, able to form more or less dense free-floating stands in temporary or permanent ponds, which hardly exceed 1.5 meters in depth. This community is typical of sunny, stagnant water bodies, sheltered from the wind, and tends to interpenetrate with other aquatic coenoses. In the studied area, its growth optimum is in late spring, whereas it tends to regress in the presence of summer drying events, and stationing of livestock.

Syndynamism – Pioneer community which tends to be invasive, limiting the growth of submerged hydrophytes. At Gorgo Lungo (Godrano, PA) the association is in contact with the Potamogetono-Ceratophylletum submersi (Table 4)

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic (meso-Mediterranean subhumid/humid).

SynchorologyL. minor is a subcosmopolitan species, with an oceanic climatic optimum, which is present in North America, Europe, Africa, and Western Asia (Landolt 1986). L. minor communities have a wide distribution and are quite widespread in continental Italy (Brullo et al. 2001; Sburlino et al. 2004) and large islands (Biondi and Bagella 2005). In Sicily, they were recognized on the Nebrodi and Sicani Mts (Brullo et al. 1994; Marino et al. 2005), and in the Trapani (Guarino and Pasta 2017) and Palermo (at Bosco Granza; Gristina and Marcenò 2009) surroundings.

Local distribution – In the study area, this association is quite rare; it was detected at the Bosco Ficuzza (Gorgo Lungo, Margiazzo del Vallone Arcere, Contrada Sovarita and Contrada Cannitello), and Bosco Granza at Bomes Lakes (Figure S3d) and Portella Granza.

2. Lemnetum gibbae Miyawaki et J. Tüxen 1960 (Tables 2 and 15)

Diagnostic taxa (% constancy) – Lemna gibba L. (100%, dominant).

Syntaxonomic note – Due to the very poor and constant composition, the stands dominated by L. gibba L. are generally ascribed to the Lemnetum gibbae (Sburlino et al. 2004), typical of stagnating eutrophic to hypertrophic waters, often subjected to direct anthropic disturbance and/or pollution (Scoppola 1982; Ninot et al. 2000; Sburlino et al. 2004; Šumberová 2011a; Lastrucci et al. 2014).

Short description – Acropleustophytic aquatic association dominated by L. gibba. It forms dense free-floating populations, which tend to cover the entire surface of small ponds. This association is typical of weakly flowing environments, artificial basins, and ditches used for watering livestock, up to 150 cm deep, sunny and/or partially shaded. The association’s growth optimum is in late spring and it tolerates summer water stress conditions. Based on the present relevés, two distinct aspects have been described: one represented by monospecific or strictly paucispecific stands; and a second one characterized by a richer presence of hydrophytes, even if with very low cover values.

Bioclimate in Sicily – Mediterranean xeric-oceanic/Mediterranean pluviseasonal-oceanic (from infra-Mediterranean dry to meso-Mediterranean subhumid/humid).

Syndynamism – This association is a pioneering assemblage, sometimes able to act as invasive. Due to the progressive eutrophication of waters with the advance of season (e.g., progressive concentration of solutes), in conjunction with higher summer water temperatures, it tends to locally replace the Lemnetum minoris of which can be considered as a seasonal vicariant.

Synchorology – This association is rather common in Italy and it was also largely reported for the Italian territory, including the Mediterranean regions (e.g., Maiorca et al. 2007, 2020; Minissale and Spampinato 1990; Sburlino et al. 2004). In Sicily it was recognized by several authors (Abbadessa et al. 2005; Marino et al. 2005; Giardina et al. 2007), with records for the Nisseno (Marcenò and Raimondo 1977), and Etnean areas (Minissale and Spampinato 1990), the Catania (Cambria 2012), Trapani (Gianguzzi and La Mantia 2009) and Palermo sourroundings (Gianguzzi and La Mantia 2004; Gristina and Marcenò 2009).

Local distribution – It is a rather rare association. It was found at the Bosco Ficuzza area (Case Cuttitta, Gorgo Cerro and Gorgo Lungo), at the Monte Palmeto near Carini (PA), and at the mouth of the Mandrarossa Stream along the Agrigento coast (Menfi, AG).

3. Lemna minuta community (Tables 3 and 15)

Diagnostic taxa (% constancy) – Lemna minuta Kunth (100%, dominant).

Syntaxonomic noteL. minuta Kunth is an alien species native to the temperate and subtropical America (Banfi and Galasso 2010), locally considered as invasive as in many other Italian regions (Galasso et al. 2018). From a phytosociological point of view, in Italy this species forms communities attributed at different associations such as Azollo filiculoidis-Lemnetum minuscolae Felzines & Loiseau 1991 or Lemnetum minuto-gibbae Liberman Cruz, Pedrotti & Venanzoni 1988, even if some authors consider these assemblages as a basal phytocoenon (Sburlino et al. 2004; Viciani et al. 2020 and references therein).

Short description – Acropleustophytic aquatic community dominated by L. minuta. It isable to form dense free-floating populations that can spread rapidly and cover the entire surface of the colonized water bodies, with a growth optimum in spring. It occurs in shaded environments, even if it is well suited to conditions of high insolation, and hypereutrophy. Indeed, this association is frequently found in artificial habitats, or deeply impacted water bodies, with depths up to 1.8 m. Our relevés show monophytic or very poor stands, showing an extremely impoverished aspect of the Lemnetum minuto-gibbae association. Within this community in the study area another alien species such as Paspalum distichum L. is frequently recorded.

Bioclimate in Sicily – Mediterranean xeric-oceanic (thermo-Mediterranean dry/subhumid).

SyndynamismL. minuta acts as a pioneering taxon, often becoming invasive.

Synchorology – In Northern and Central Italy (Sburlino et al. 2004; Ceschin et al. 2016), the species has shown a recently rapid spread. In southern Italy it has also started to spread by colonising lakes with high naturalness (Spampinato et al. 2019). Before the present work, the only reports for Sicily concerned two small ponds at the Monte Pellegrino, near Palermo (Marrone and Naselli Flores 2011).

Local distribution – It is a rather rare community; it was confirmed for the Monte Pellegrino at the Gorgo of Santa Rosalia (Suppl. material 2, Figure S1b) and Cozzo della Grattalora, and in the Trapani surroundings, near the city of Mazara del Vallo.

4. Potamogetono-Ceratophylletum submersi Pop 1962 (Tables 4 and 15; Suppl. material 2, Figure S1c)

Diagnostic taxa (% constancy) – Ceratophyllum submersum L. (100%, dominant).

Syntaxonomic noteC. submersum L. is a very rare species, both in Sicily and in Italy in general (Lastrucci et al. 2019a). Due to the rarity of this species, only scarce phytosociological data are available, at least for Italy. According to the phytosociological databases LISY (Bracco et al. 2007) and VegItaly (Landucci et al. 2012), communities dominated by C. submersum have been reported only for few wetlands in Northern Italy (Gerdol et al. 1979; Piccoli 1998; Pedrotti 2003). According to Šumberová (2011a), C. submersum-dominated communities can be attributed to the association Potamogetono-Ceratophylletum submersi Pop 1962 typical of shallow, well-isolated, and warm in summer ponds, with remarkable water level variations (see also Hrivnák 2002). The association can also include the presence of lemnids.

Short description – Submerged community with ceratophyllid habit dominated by C. submersum. It is typical of shallow ponds, where the species tends to occupy the entire water body. It tolerates some degree of shading and can be favoured by the presence of a thin layer of floating pleustophytes (e.g., Lemna minor and L. gibba), as well as by a progressive seasonal eutrophication of waters and high summer temperatures. Its growth optimum is in late spring.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic (meso-Mediterranean subhumid).

Syndynamism – In the study area, the association is in close contact with the Lemnetum minoris, which it replaces in the deeper sectors of the Gorgo Lungo pond, where this species tends to spread into the wettest sectors of the helophytic belts dominated by Sparganium erectum L. and Schoenoplectus lacustris (L.) Palla.

Synchorology – In Sicily, C. submersum is quite rare: the Gorgo Lungo near Godrano (PA) is the only ascertained population for the western sector of Sicily so far (Lastrucci et al. 2019a).

Local distribution – Gorgo Lungo (Godrano, PA).

5. Potamogetonetum natantis Hild 1959 (Tables 5 and 16; Suppl. material 2, Figure S1g)

Diagnostic taxa (% constancy) – Potamogeton natans L. (100%, dominant).

Syntaxonomic note – In Sicily, and in the Nebrodi Mountains in particular, P. natans L. was considered a characteristic species of two different associations: the Utriculario-Potametum natantis Raimondo, Marino & Schicchi 2011, that belongs to the order Utricularietalia Den Hartog & Segal 1964 (Raimondo et al. 2011), and the Polygono-Potametum natantis Soò (1927) 1964, as reported by Brullo et al. (1994). This latter appears as a rather complex vegetation type, with two different aspects: a first one dominated by Persicaria amphibia (L.) Delarbre, and a second one dominated by P. natans. In the study area, however, P. amphibia is rather rare and never plays a clear physiognomic role. Based on this, we prefer to refer the recorded P. natans coenoses to a new association for Sicily, the Potamogetonetum natantis Hild 1959. This community is typical of mostly mesotrophic, but also oligotrophic to eutrophic shallow water bodies (in the range 20–100 cm), with still or slowly moving waters (Šumberová 2011b). Some criticisms remain, in any case, respect to the attribution of this association to the alliance level. Several authors (e.g., Šumberová 2011b) ascribed this association to the Potamogetonion alliance, while others to the Nymphaeion alliance (e.g., Venanzoni & Gigante 2000; Jarolímek et al. 2008; Ferrez et al. 2011). Since P. natans contributes only marginally to form submerged stands, we are led to classify this association into the Nymphaeion alliance, that includes communities dominated by floating-leaved hydrophytes. In the study area, the association shows both monophytic and more diversified aspects.

Short description – Rhizophytic community dominated by P. natans, often monospecific, in which other hydrophytes belonging to the Potamogetonetea are occasionally present. The coenosis is typical of permanent habitats (including artificial ones) with depths greater than 80 cm (and up to 4 m), with oligo-mesotrophic to mesotrophic waters and subjected to wide summer water variations. P. natans tends to form quite dense stands (> 80% in coverage), colonizing the innermost, permanent sectors of water bodies.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic and Temperate/submediterranean (from meso-Mediterranean to supra-Mediterranean subhumid-humid).

Syndynamism – This association is in close contact with other associations of the Potamogetonetea class (Potamogetonetum pusilli, Ranunculetum peltati, Lemno-Callitrichetum obtusangulae) and algal assemblages (Chara spp.), as well as of the marginal helophytic communities of the Phragmito-Magnocaricetea Klika in Klika & Novák 1941 class.

SynchorologyP. natans-dominated communities are rather common in Europe (Meriaux 1983; Doll 2008; Görs 1992; Schratt 1993; Pott 1995; Sburlino et al. 2008; ecc.) and in Italy, where they are reported for several wetlands from northern to southern regions (Aita et al. 1979; Montanari and Guido 1980; Gerdol and Piccoli 1980; Corbetta and Pirone 1989; Gerdol and Tomaselli 1993, 1997; Buchwald 1994; Piccoli 1998; Bracco et al. 2000; Tomaselli and Bernardo 2006; Tomaselli et al. 2006; Sburlino et al. 2008; Venanzoni and Gigante 2000; Lastrucci et al. 2004; Bolpagni and Piotti 2015). In Sicily, this association was recognized for the Nebrodi (Gianguzzi 2006; Raimondo et al. 2011) and Madonie Mts (Sortino et al. 1977; Brullo et al. 1994).

Local distribution – This association was found in both natural and artificial ponds lied in the hilly-mountain sector, scattered in several reservoirs of the Bosco Ficuzza and Rocca Busambra area, on the Sicani Mountains at Monte Carcaci and further east at the Bosco Granza, at the Madone al Gorgo di Pollicino (Suppl. material 2, Figure S3c) and at the Pietra Giordano, as previously recorded by Sortino et al. (1977).

6. Potamogetonetum pusilli von Soó 1927 (Tables 6 and 16; Suppl. material 2, Figure S1f)

Diagnostic taxa (% constancy) – Potamogeton pusillus L. (100%, dominant).

Syntaxonomic noteP. pusillus L. often shows a certain ecological amplitude being able to establish in freshwater habitats with both standing and weakly flowing waters (Preston 1995). In Italy, the communities of P. pusillus are generally ascribed to a basal phytocoenon (Biondi et al. 1997, 2004; Piccoli 1998; Tomaselli and Bernardo 2006, Lastrucci et al. 2008; Sburlino et al. 2008). However, in lentic habitats, such as small pools (Lastrucci et al. 2012) or natural lakes (Landucci et al. 2011), the P. pusillus communities show a greater compositional constancy that justifies the attribution to an association (Potamogetonetum pusilli).

Short description – The association is typical of mesotrophic to eutrophic water bodies. It occupies a wide range of depths (0.5–3.0 m), often colonizing disturbed habitats, or representing early successional stages of pond evolution (Šumberová 2011b). In the study area, P. pusillus is often associated to other sporadic hydrophytes, such as Ranunculus aquatilis L. and Callitriche brutia Petagna. The Potamogetonetum pusilli stands are rather dense (> 90% in coverage) and colonize depths of about 80-100 cm, occupaying the intermediate vegetation belt between central, deeper sectors and shorelines. It has its growth optimum in spring.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic (meso-Mediterranean subhumid-humid).

Syndynamism – In the study area, this association is mainly represented by paucispecific stands and replace the Ranunculion aquatilis at deeper waters. In the innermost sectors of ponds, it spreads into others Potamogetonetea class units and algal assemblages (Chara spp.). Along the littorals, it is in close contact with the helophytic consortia of the Phragmito-Magnocaricetea class.

SynchorologyP. pusillus is a species with a circumboreal distribution (Preston 1995). Communities dominated by P. pusillus are reported for Germany (Pott 1995), Poland (Nowak et al. 2007), and various regions of Italy, such as Friuli Venezia Giulia, (Sburlino et al. 2008), Lombardy (Bolpagni 2013), Veneto (Pingitore et al. 2013), Emilia Romagna (Biondi et al. 1997; Piccoli 1998), Tuscany (Lastrucci et al. 2008), Umbria (Landucci et al. 2011), and Calabria (Tomaselli and Bernardo 2006). In Sicily, this species had been detected for the Nebrodi Mts, in the frame of the following associations: Utricularietum australis Müller et Görs 1960 (Brullo et al. 1994), and Utriculario-Potametum natantis (Raimondo et al. 2011).

Local distribution – This association has been found only in a few locations, both on flyschyoid and carbonate substrates. At the Rocca Busambra area, it is very rare, found only in the small lake locally called "r’u zù Rusulìnu" (Godrano, PA). Conversely, this association is much widespread at the Pizzo Cane Reserve, at the Pizzo Selva a Mare, as well as at Cozzo Valdaro and Contrada Randino.

7. Potamogetonetum pectinati Carstensen ex Hilbig 1971 (Tables 7 and 16)

Diagnostic taxa (% constancy) – Potamogeton pectinatus L. (100%, dominant).

Syntaxonomic note – Widespread association, reported for several European countries, including some Mediterranean areas and Sicily (Géhu and Biondi 1988; Baldoni and Biondi 1993; Ninot et al. 2000; Venanzoni and Gigante 2000; Brullo et al. 2002; Ferrez et al. 2011; Raimondo et al. 2011; Šumberová 2011b; Zervas et al. 2020). It is often mono- or paucispecific, typical of freshwater and brackish habitats, from eutrophic to hypertrophic, polluted waters, with high turbidity and anoxic conditions (Baldoni and Biondi 1993; Ceschin and Salerno, 2008; Landucci et al. 2011; Azzella et al. 2013). Coenoses characterized by P. pectinatus L. and Fontinalis antipyretica Hedw. were reported for Crete Island by Gradstein & Smittenberg (1977).

Short description – Rhizophytic community dominated by P. pectinatus, sporadically associated with other rooted hydrophytes. It is typical of estuary environments with weakly flowing waters, deep water reservoirs (even over 3 m of depth), and semi-permanent, natural habitats where the dominant taxon tends to form dense stands (> 80% coverage). The growth optimum is in the spring-summer period. In the study area, we noted the coexistence of monospecific stands of P. pectinatus alongside richer assemblages in species, including algae of the genus Chara. The presence of a non-negligible contribution of macroalgae to P. pectinatus stands was previously highlighted by Gradstein and Smittenberg (1977) for Crete Islands.

Bioclimate in Sicily – Mediterranean xeric-oceanic/Mediterranean pluviseasonal-oceanic (from infra-Mediterranean dry to meso-Mediterranean subhumid/humid).

Syndynamism – It colonizes the deepest sectors of the colonized water bodies, coming into contact with other coenoses of the Potamogetonetea class and algal assemblages (dominated by Chara spp.). Along littorals, this association tends to spread into the helophytic communities of the Phragmito-Magnocaricetea class.

SynchorologyP. pectinatus is a cosmopolitan species, typical of fresh- and brackish waters on all continents, except Antarctica. The Potamogetonetum pectinati was described for Germany (Carstensen 1955), and it is reported for other various European countries (Hilbig 1971; Schubert et al. 1995; Matuszkiewicz 2005; Šumberová 2011a), as well as for continental Italy (Sburlino et al. 2008), and Italian largest islands (Brullo et al. 2001; Biondi and Bagella 2005). In Sicily, it is widespread both in coastal areas, in aquatic habitats with low salinity, and mainland (Bartolo et al. 1982; Spampinato and Sciandrello 2013). It is mentioned for some river mouths, and lentic habitats in the Hyblean sector (Bartolo et al. 1982; Spampinato and Sciandrello 2013), in the Trapani (Brullo and Ronsisvalle 1975) and in the Nisseno areas (Marcenò and Raimondo 1977; Brullo and Sciandrello 2006; Sciandrello 2009).

Local distribution – In the study area, it was found in different artificial reservoirs, near Rocca Busambra (Contrada Casale, Contrada Cicio, and Contrada Alpe Cucco), on the Sicani Mountains (at the Gorgo di Sant’Andrea; Figure S3b) and at the mouth of the Carboj River along the Agrigento coast.

8. Groenlandietum densae Segal ex Schipper et al. in Schaminée et al. 1995 (Tables 8 and 16)

Diagnostic taxa (% constancy) – Groenlandia densa (L.) Fourr. (100%, dominant).

Synon.Groenlandietum densae Bolós 1957 (phantom); Groenlandietum densae Segal 1965 (nom. nud., art. 2b); Potamogeton Korneck 1969 (art. 3c).

Syntaxonomic note – Community of oligo-mesotrophic water bodies, and limestone substrates (Ferrez et al. 2011), distributed in Central and Southern Europe (Brullo et al. 1994). Several G. densa-associations have been described for the Iberian Peninsula (Loidi et al. 1997), both for flowing waters [Ranunculo trichophylli-Groenlandietum densae (Kohler et al. 1974) Passarge 1994], and lentic habitats (Groenlandio densae-Zannichellietum peltatae Velayos, Carrasco & Cirujano 1989). This latter unit is replaced by the Potametum denso-nodosi O. Bolòs 1957 in habitats with greater nutrient availability (Melendo et al. 2003).

Short description – Rhizophytic community dominated by G. densa, only sporadically associated with other hydrophytes, such as Callitriche obtusangula Le Gall., occurs predominantly in sunny, permanent habitats, where develops medium coverage stands (up to 80%). This species prefers groundwater-dependent ecosystems, and spring waters which contribute to mitigate the excessive heating of water in summer. It preferably colonises littorals (up to 80-100 cm), on both flyschioide and carbonate sediments waterproofed by silty-clayey deposits.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic and Temperate/submediterranean (from meso-Mediterranean subhumid to supra-Mediterranean subhumido-humid).

SyndynamismG. densa communities are closely associated to several aquatic plant associations colonizing the permanent sectors of water bodies (cl. Potamogetonetea), as well as algal assemblages (Chara ssp.), as recorded in the Nebrodi Mts (Guarino et al 2019), and helophytic belts (cl. Phragmito-Magnocaricetea).

SynchorologyG. densa is a Eurosiberian species (Pignatti 2017–2019). In Sicily, it is reported for the Nebrodi (Barbagallo et al. 1979; Brullo et al. 1994; Gianguzzi 2006; De Castro et al. 2008, 2015a, 2015b; Guarino et al. 2019) and Sicani Mts (Gianguzzi et al. 2007).

Local distribution – A small population has been recorded in a reservoir located along the south side of the Monte Carcaci (Castronovo di Sicilia, PA); a second location is in a small wetland at the Bosco Granza (Sclafani Bagni, PA).

9. Ranunculetum rionii Hejný et Husák in Dykyjová et Květ 1978 (Tables 9 and 16; Suppl. material 2, Figure S2a)

Diagnostic taxa (% constancy) – Ranunculus rionii Lagger (100%, dominant).

Syntaxonomic note – The association is typical of shallow, eutrophic, and often salt-rich, warm ponds (Sumberová 2011b). Our stands can be attributed to the Ranunculetum rionii, an association reported for the first time in Italy by Lastrucci et al. (2019b) for the Acquato Lake, in Tuscany. R. rionii Lagger was recorded as new species for Sicily by Bartolucci et al. (2021). The populations of R. rionii of Western Sicily show a certain morphological affinity with R. trichophyllus Chaix, from which they differ for the presence of smaller and hairless achenes, and smaller petals.

Short description – Paucispecific aquatic community with a distinct myriophyllid habit, dominated by R. rionii, which tends to form compact and continuous belts along the outer edges of semi-permanent or ephemeral ponds characterized by strong seasonal water level variations. In the study area, this association was found in small ponds, even temporary ones, situated both on flyscioid substrates waterproofed by sub-alkali clay deposits, but also on limestone and calcarenites. The association’s growth optimum is in late spring.

Bioclimate in Sicily – Mediterranean xeric-oceanic and Mediterranean pluviseasonal-oceanic (from thermo-Mediterranean dry to meso-Mediterranean subhumid/humid).

Syndynamism – This association is often in contact with other Potamogetonetea and algal assemblages (Chara spp.), whereas along littorals it spreads into helophytic belts, as testified by the presence of several helophytes with high frequency values in the collected relevés.

SynchorologyR. rionii is a species with wide distribution in North Africa, Europe, and Central-Western Asia (Wiegleb et al. 2017); despite this, the Ranunculetum rionii is mainy known for Eastern Europe (Korotkov et al. 1991; Dubyna 2006; Kubalová 2009; Hrivnák and Csiky 2009) and France (Felzines 2016).

Local distribution – It has been recognized in several small ponds (both natural and artificial), distributed around the Sicani Mts, Rocca Busambra, Palermo Mts (at the Gorgo di Rebuttone; Altofonte – Suppl. material 2, Figure S1a), on the south side of the Monte Palmeto (Carini), and further east on the limestone platforms of Mazara del Vallo (at the Garufi plain; Suppl. material 2, Figure S2e).

10. Ranunculetum aquatilis Géhu 1961 (Tables 10 and 16; Suppl. material 2, Figure S2b)

Diagnostic taxa (% constancy) – Ranunculus aquatilis L. (100%; dominant).

Taxonomic and Syntaxonomic note – The presence of R. aquatilis in Italy is rather debated. The species was reported with several regional lacunae for the flora of Italy (Pignatti 1982; Conti et al. 2005), until Desfayes (2008, 2011) proposed to exclude it from the entire Italian territory. This proposal was accepted by Bartolucci et al. (2018) but not by the editors of the second edition of the “Italian Flora” by Pignatti (2017–2019) that lists this species as present in Italy. Even if the R. aquatilis group is a very critical group, in our opinion, R. aquatilis is recognizable in the study area and distinguished from Ranunculus peltatus Schrank for various characters such as the length of peduncles, the leaf margin shape, length of the petals and the morphology of nectar pits, as reported by many European determination keys (Pignatti 1982; Cook 1986; Pizarro 1995; Wiegleb et al. 2017). From a phytosociological point of view, R. aquatilis-assemblages are attributed to the association Ranunculetum aquatilis Géhu 1961, growing on clear, stagnant or slow-running, sunny, neutro-basophilous and nutrient-rich waters, on silty-clayey bottom, occasionally subject to desiccation or eutrophication (Buchwald 1994; Passarge1992).

Short description – Batrachid community, with a clear predominance of R. aquatilis, which is associated with Gliceria notata Chevall. and other sporadic taxa of the Potamogetonetea class (Callitriche stagnalis Scop., C. brutia and C. obtusangula). It is typical of sunny ponds, characterized by strong seasonal water variations, situated on flyschoid substrates, but in some cases also on calcareous substrates. This association contributes to form a continuous belt along the external edges of colonized water bodies, at depths between about 50 cm and shores, therefore well adapted to the rapid drying of temporary Mediterranean ponds. The association’s growth optimum is in late spring.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic (meso-Mediterranean subhumid/humid).

Syndynamism – This association is in close contact with submerged algal assemblages (Chara spp.) or with coenoses of the Potamogetonetea and Lemnetea classes. Often, the association forms actual transitional communities towards deeper vegetation belts (Rels 13–14, table 10). Along the outer edges of the colonized water bodies, this association is progressively replaced by helophytic belts of the Phragmito-Magnocaricetea class, and sometimes it spreads into the Isoëto-Nanojuncetea Br.-Bl. & Tüxen ex Westhoff, Dijk & Passchier 1946 communities in habitats subjected to rapid seasonal water variations and the progressive drying of sediments.

SynchorologyR. aquatilis is a subcosmopolitan species, with a wide Euro-Asian distribution, as well as in North Africa and North America. In Italy, associations dominated by R. aquatilis have been reported mainly for Central Italy (e.g., Biondi et al. 1999). As put in evidence by several authors (Géhu and Meriaux 1983; Passarge 1992), one of the main issues related to the correct recognition of this association depends on the fact that many authors do not separate the assemblages dominated by R. aquatilis and R. peltatus, respectively. Consequently, the Ranunculetum aquatilis is often considered as a macro-association to which populations of both species can be attributed (see also Sumberová 2011b). Nevertheless, Géhu and Meriaux (1983) highlighted how in France the two species differentiate two distinct associations, ecologically and geographically vicariant. In particular, the Ranunculetum aquatilis shows a wide ecological amplitude, and a greater preference for organic and nutrient rich waters. In the study area, a clear distinction between the typical habitats of these two coenoses has been recognized. R. aquatilis prefers water bodies located at higher altitudes (hilly and sub-mountain horizons) and shows a more mesophilic character. Conversely, R. peltatus is also found at low-altitude locations (200–250 m s.l.m), even in coastal areas of North-Western Sicily.

Local distribution – The association has been detected in several hilly and submontane water bodies, both of natural and artificial origin, permanent and semi-permanent (with a hydroperiod of 9–10 months). It is distributed in the foothills north of the Rocca Busambra (e.g., Gorgo Lungo, Gorgo dei Palermitani, Gorgo Cerro), at altitudes between 738 and 890 m a.s.l., in the Trabia (at the Gorgo di Pizzo Selva a Mare) and in the Palermo Mts (at the Gorgo di Rebuttone).

11. Ranunculetum peltati Horst, Krausch & Müller-Stoll 1966 em. Weber-Oldecop 1969

subass. typicum (Table 11a rels 1–7; tab. 16; Suppl. material 2, Figure S2c)

Diagnostic taxa (% constancy) – Ranunculus peltatus Schrank (100%, dominant).

Syntaxonomic noteR. peltatus (Suppl. material 2, Figure S2d) shows a high adaptability to different ecological conditions (Garbey et al. 2004), implying that this species may differentiated more than one community (see also Lastrucci et al. 2007). The association Ranunculetum peltati is typical of small, clear lentic water bodies, with depths not exceeding 80–100 cm. These habitats can be moderately rich in nutrients, subjected to summer desiccation and livestock impacts, however the Ranunculetum peltati is particularly sensitive to pollution and shading (Passarge 1992). Two subassociations, the subass. typicum and the subass. potamogetonetosum were identified and typified by Passarge (1992). The Ranunculetum peltati was also reported for the Mediterranean area by Gradstein and Smittenberg (1977). In addition, for the oligotrophic, neutro-acidophilous deep standing and cold waters of temperate and Mediterranean siliceous areas of the Iberian Peninsula, the association Callitricho brutiae-Ranunculetum peltati Pizarro & Rivas Martínez 2004 was described. This latter association is considered as a geosynvicariant of the Ranunculetum peltati, and it was recently reported for some wetlands in Tuscany by Lastrucci et al. (2007) due the presence of some characteristic species of the association, such as C. brutia and Myriophyllum alterniflorum DC. In the study area, however, C. brutia is rather rare and only rarely found in the coenoses dominated by R. peltatus. Therefore, it seemed more appropriate to assign the Sicilian assemblages to the Ranunculetum peltati. Furthermore, the ecological conditions observed in Sicily seem rather far from those recorded for Spain. Here, the studied water bodies are not characterized by cold waters, and their depth is rather low. Based on this, we identified a new subassociation differentiated from R. rionii and species indicating high water fluctuations, such as Oenanthe fistulosa L. and Alisma lanceolatum With.

Short description – Batrachid community with a clear predominance of R. peltatus, only occasionally associated with other hydrophytes. It is typical of ponds characterized by strong seasonal water level variations, situated on carbonate substrates, with oligo-mesotrophic waters. This coenosis prefers the sunniest sectors of colonized habitats, sometimes extending over the entire surface of reservoirs/ponds, developing in these conditions submerged stems up to depths greater than 2 m. With the progressive and rapid lowering of the water level, R. peltatus tends to go up to the emerged banks tolerating the initial phases of seasonal desiccation. Its growth optimum is in the late spring.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic (from thermo-Mediterraean dry to meso-Mediterranean subhumid/humid).

Syndynamism – This association is continuous with other coenoses of the Potamogetonetea class and submerged algal assemblages (Chara spp.); along littorals, it tends to be replaced by amphibian vegetation often dominated by G. notata.

SynchorologyR. peltatus is a European species restricted to the temperate and southern areas of Europe, North Africa, and West Asia (Wiegleb et al. 2017).

Local distribution – It is present in several small ponds (both natural and artificial) located along the southern side of the Rocca Busambra (at the Piano Guddemi; Godrano, PA), at the Monte Carcaci (Castronovo di Sicilia, PA), and further west in the Trapani surroundings (at the Pantani di Anguillara; Calatafimi), and at the Gorgo di Monte Cofano (Custonaci; Gianguzzi and La Mantia 2009, originally reported as Ranunculetum baudotii Br.-Bl. in Br.-Bl., Roussine & Négre 1952).

ranunculetosum rionii subass. nov. (Table 11b rels 8–14 - holotypus rel. 13; tab. 16)

Diagnostic taxa (% constancy)Ranunculus rionii Lagger (100%, dominant), Oenanthe fistulosa L. (> 80%).

Short description – This subassociation differs from the typical aspect of the Ranunculetum peltati mainly because it colonizes littorals (with depths up to 50–60 cm) and muddy sediments. The community is characterized by the constant presence of R. rionii and O. fistulosa, accompanied with a certain frequency by A. lanceolatum. It has the growth optimum in spring, and it prefers higher altitude habitats than the association typicum.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic (meso-Mediterranean subhumid/humid).

Local distribution – It is present in some ponds distributed in the core sector of the study area, at altitudes between 850 and 950 m a.s.l., along the southern side of the Rocca Busambra (contrade Marosa and Guddemi), and at the Sicani Mts (at the Gorgo di Carcaci).

12. Lemno-Callitrichetum obtusangulae (Philippi 1978) Passarge 1992 (Tables 12 and 16; Suppl. material 2, Figure S1d)

Diagnostic taxa (% constancy) – Callitriche obtusangula Le Gall (100%, dominant), Lemna minor L. (> 35%).

Syntaxonomic noteC. obtusangula may form stands both in running and in stagnant waters. According to several authors (e.g., Meriaux and Verdevoye 1983; Brullo et al. 1994; Sburlino et al. 2008), in running waters its typical association is the Callitrichetum obtusangulae Seibert 1962, belonging to the Batrachion fluitantis Neuhäusl 1959 alliance. For several wetlands of Nebrodi Mts, Brullo et al. (1994) described a very peculiar and complex community ascribed to the Glycerio-Callitrichetum obtusangulae Brullo, Minissale & Spampinato 1994. This association is differentiated by C. obtusangula, C. brutia var. hamulata (Kütz. ex W.D.J. Kock) Lansdown and C. stagnalis, as well as by the presence with rather high frequencies of amphibian taxa such as Glyceria spicata Guss., Peplis portula L., and Alopecurus aequalis Sobol., besides a large group of aquatic species. The coenoses dominated by Callitriche genus in the study area exhibit some ecological similarities with those described by Brullo et al. (1994), however they differ strongly in the floristic assemblage. Here, only C. obstusangula has been found, whereas G. spicata is absent and replaced by G. notata, which cannot be considered as a good differential taxon because it is present in almost all the coenoses here reported, besides being the most frequent species in the study area (55% of frequency in the relevés matrix). Furthermore, given the importance of L. minor in differentiating the communities of C. obstusangula in the study area, it seems most appropriate to attribute these coenosis to the Lemno-Callitrichetum obtusangulae, also reported for the northern Italy by Sburlino et al. (2008). Passarge (1992) placed this association in the alliance Lemno-Callitrichion Passarge 1992, that currently has been placed in synonim with the Ranunculion aquatilis (Mucina et al. 2016). The Lemno-Callitrichetum obtusangulae is typical of summer-warm waters, rich in nutrient, tolerating drying periods, eutrophication, and slight salinity, but fearing cold winters and anthropogenic pollution (Passarge 1992).

Short description – Aquatic vegetation dominated by C. obtusangula, with the frequent presence of L. minor. This community is typical of small, semi-permanent water bodies lied on quartzarenitic substrates, with high levels of clay or sometimes with sandy sediments. It prefers muddy bottoms, and conditions of partial sunshine, growing at depths not exceeding 60 cm, and tolerating slightly eutrophic conditions. The association’s growth optimum is in late spring.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic and Temperate/submediterranean (from meso-Mediterranean to supra-Mediterranean subuhmid-humid).

Syndynamism – Towards the deepest part of the water body sectors, this association is in contact with other kinds of Potamogetonetea and Lemnetea vegetation, while along littoral it spreads into the Phragmito-Magnocaricetea belts.

Synchorology – The association is distributed in the temperate-sub-Atlantic regions of Europe (Passarge 1992), while in Italy it has been previously reported only for the Veneto region (Sburlino et al. 2008).

Local distribution – Ponds located in the northern foothills of the Rocca Busambra, at altitudes between 500 and 650 m a.s.l., in the surroundings of Godrano (Gorgo Lungo, Gorgo Pizzo Campana, Case Franco, Vallone Frattina and Coda di Riccio), Monreale (Zotta Frascino and Vallone Arcere), and Marineo (Cozzo Bileo and Sovarita). Further east, it is found in the Sclafani Bagni area (at Bosco Granza and Lake Bomes; PA), as well as at the Madonie Mts (at Pietra Giordano; Geraci Siculo, PA).

13. Callitriche stagnalis community (Tables 13 and 16; Suppl. material 2, Figure S3e)

Diagnostic taxa (% constancy) – Callitriche stagnalis Scop. (100%, dominant), Ranunculus omiophyllus Ten. (80%).

Syntaxonomic note – In Italy C. stagnalis differentiates communities belonging both to the Ranunculion fluitantis (e.g., Buchwald 1994; Ceschin and Salerno 2008) and the Ranunculion aquatilis (e.g., Baldoni and Biondi 1993; Brullo et al. 1994; Brullo et al. 2001; Lastrucci and Becattini 2008; Lastrucci et al. 2015) alliances. This confirms the ecological amplitude of this species, able to form stands in both running and stagnant waters. From a syntaxonomic point of view, the C. stagnalis-stands are frequently ascribed to a Callitriche stagnalis phytocoenon, less frequently to the Callitrichetum stagnalis Segal 1965 (Ceschin and Salerno 2008). However, for South Italy, peculiar coenoses dominated by this species have been described. Brullo et al. (1994) classified the C. stagnalis stands recorded at the Nebrodi Mts as a new subassociation (subass. callitrichetosum stagnalis) of the Glycerio spicatae-Callitrichetum obtusangulae Brullo, Minissale & Spampinato 1994. At the Aspromonte Mt (Calabria), instead, a peculiar association, ascribed to the Ranunculion aquatilis alliance, dominated by C. stagnalis, Ranunculus ophioglossifolius Vill., P. portula, Juncus articulatus L. and P. natans has been described as Ranunculo ophioglossifolii-Callitrichetum stagnalis Brullo, Scelsi, Spampinato 2001 (Brullo et al. 2001).

Short description – Aquatic vegetation dominated by C. stagnalis, in which Ranunculus omiophyllus Ten. and G. notata are frequently found, often showing high cover-abundance values. This kind of vegetation colonizes the margins of small, permanent water bodies, fed by groundwater, or semi-permanent ponds with depths not exceeding 10–15 cm, with short summer drying phases. The community seems to prefer wet habitats with muddy bottoms, sunlight, and oligotrophic to slightly eutrophic waters/sediments (in ponds subject to livestock grazing/trampling), situated on quartz-sand substrates. It has the growth optimum in spring.

In a small pond of the study area (Gorgo Cerro along the northern side of the Rocca Busambra; table 12, rel. 5), an extremely impoverished aspect of the Ranunculo ophioglossifolii-Callitrichetum stagnalis Brullo, Scelsi, Spampinato 2001 has been recorded. Accordingly, the presence of this association in Sicily could be hypothesized. Further investigations will be necessary to verify this preliminary insight.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic (meso-Mediterranean subhumid/humid).

SyndynamismC. stagnalis forms stands in contact with other Potamogetonetea coenoses, in particular with the Junco bufonii-Ranunculetum omiophylli, compared to which tends to occupy more inundated zones. It represents a transitional phase towards wet vegetation of highly, marginal flooded sectors of ponds.

Local distribution – Small wet habitats on the northern side of the Rocca Busambra near the Bosco Ficuzza.

14. Junco bufonii-Ranunculetum omiophylli ass. nov. (Table 14 - holotypus rel. 8; tab. 16; Suppl. material 2, Figure S3f)

Diagnostic taxa (% constancy) – Ranunculus omiophyllus Ten. (100%, dominant), Juncus bufonius L. (> 80 %).

Syntaxonomic noteR. omiophyllus is mainly distributed in the Atlantic Europe, from North- Spain to British Islands, but with an extension in the Mediterranean, from North Africa to Sicily, and Southern Italy (Pizarro 1995; Pignatti 2017–2019). According to Rivas-Martinéz et al. (2001, 2002), R. omiophyllus is a characteristic taxon of the Ranunculion omiophyllo-hederacei Rivas-Martinéz et al. 2002, a peculiar alliance characterized by rooted stoloniferous helophytic ranunculids with floating leaves, as Ranunculus hederaceus L. or R. omiophyllus, (Rivas-Martinéz et al. 2002). For Spain, two associations dominated by R. omiophyllus have been described: the Ranunculetum omiophylli Braun-Blanquet & Tüxen (1943) 1952, and the Myosotido stoloniferae-Ranunculetum omiophylli Rivas-Martínez et al. 2002. The first association includes, besides R. omiophyllus (= Ranunculus lenormandi F.W. Schultz.), other species such as Potamogeton oblongus Viv., Juncus bulbosus L., C. brutia var. hamulata. Conversely, the second one is characterized by Myosotis stolonifera (DC.) J. Gay ex Leresche & Levier, Montia fontana L. subsp. amporitana Sennen, and Stellaria alsine Grimm. Both these associations, therefore, appear quite different from the Sicilian assemblages. In Western Sicily, the assemblages dominated by R. omiophyllus host several differential species belonging the class Isoëto-Nanojuncetea (see Brullo and Minissale 1998) leading us to propose the institution of a new association, the Junco bufonii-Ranunculetum omiophylli. Its typical composition is made of species from both the Callitricho-Ranunculetalia and the Isoëto-Nanojuncetea classes.

Short description – Slightly sciophilous, batrachid community with a clear dominance of R. omiophyllus, frequently associated with annual micro-helophytes of the Isoëto-Nanojuncetea class such as Juncus bufonius L. and Poa infirma Kunth. The coenosis develops on muddy bottoms of shallow depressions (up to 10–20 cm) on clayey substrates. Its typical water bodies are small and have prolonged flooding phases, that last until the beginning of the summer season (June-July), and are also subjected to intense trampling disturb. The growth optimum of this new association is in late spring.

Bioclimate in Sicily – Mediterranean pluviseasonal-oceanic (meso-Mediterranean subhumid/humid).

Syndynamism – This association is in contact with several aquatic rooted coenoses (Potamogetonetea class) and in particular with Callitriche stagnalis communities, while it spread into the communities of the Isoëto-Nanojuncetea and Molinio-Arrhenatheretea Tüxen 1937 classes along the littorals of colonized wet depressions.

Local distribution – Frequent in small ponds located in the central-northern sector of the Bosco Ficuzza, within the municipalities of Godrano, Marineo, Mezzojuso, and Monreale.

Table 1.

Lemnetum minoris von Soó 1927.

Life
form
Relevé number 1 2 3 4 5 6 7 Presence
Altitude (m a.s.l.) 827 827 530 530 776 908 863
Plot size (mq) 1.5 1.5 1.5 1 1 1.5 1.5
Total cover (%) 90 80 80 90 80 80 80
Height of vegetation (cm) 3 3 4 4 3 3 3
N° species for relevé 4 4 5 5 3 4 4
Localities (see Suppl. material 1, Table 1) 43 43 65 65 31 78 76
Char. of association and upper units
I nat Lemna minor L. 5 4 5 4 4 4 4 7
Potamogetonetea units
I rad Callitriche obtusangula Le Gall 1 . 1 1 . 1 1 5
I rad Ranunculus rionii Lagger . . . . 1 . . 1
Other species
G rhiz Glyceria notata Chevall. 1 + 1 1 + 1 1 7
H scap Mentha aquatica L. . . 1 + . + 1 4
Chara sp. 1 1 . . . . . 2
T scap Ranunculus ophioglossifolius Vill. . . 1 + . . . 2
G rhiz Equisetum telmateia Ehrh. . 1 . . . . . 1
Table 2.

Lemnetum gibbae Miyawaki et J. Tüxen 1960.

Relevé number 1 2 3 4 5 6 7 8 9 10 11 Presence
Altitude (m a.s.l.) 5 248 248 615 615 464 472 890 890 738 738
Life Plot size (mq) 1 1 1 1 1 1 1 1 1 1 1
Form Total cover (%) 80 80 90 100 100 100 100 100 100 90 90
Height of vegetation (cm) 1 0,5 0,5 1 1 - 1 5 5 2 3
N° species for relevé 2 1 1 2 1 1 1 5 5 3 4
Localities (see Suppl. material 1, Table 1) 79 82 82 30 30 81 4 37 37 72 72
Char. of association
I nat Lemna gibba L. 5 3 4 5 5 5 5 5 5 5 5 11
I nat Lemna minor L. . . . . . . . 1 1 . . 2
Potamogetonetea units
I rad Ranunculus aquatilis L. . . . . . . . 1 + 1 + 4
I rad Callitriche obtusangula Le Gall . . . . . . . 1 1 . . 2
I rad Potamogeton trichoides Cham. et Schltdl. . . . . . . . . . . 1 1
Other species
H caesp Alopecurus aequalis Sobol. . . . . . . . 1 + + 1 4
G rhiz Bolboschoenus maritimus (L.) Palla 1 . . . . . . . . . . 1
H scap Mentha pulegium L. . . . + . . . . . . . 1
Table 3.

Lemna minuta community.

Relevé number 1 2 3 4 Presence
Altitude (m a.s.l.) 392 392 234 4
Life Plot size (mq) 2 2.5 1 1
Form Total cover (%) 90 100 100 100
Height of vegetation (cm) 3 3 3 3
N° species for relevé 2 2 1 1
Localities (see Suppl. mat. 1, Table 1) 73 73 74 84
Characteristic species
I nat Lemna minuta Kunth 5 5 5 5 4
Other species
G rhiz Paspalum distichum L. + 1 . . 2
Table 4.

Potamogetono-Ceratophylletum submersi Pop 1962.

Relevé number 1 2 3 4 Presence
Altitude (m a.s.l.) 890 890 890 890
Life Plot size (mq) 2 2,5 5 5
form Total cover (%) 90 100 100 100
Height of vegetation (cm) 4 4 70 80
N° species for relevé 7 5 6 7
Localities (see Suppl. mat. 1, Table 1) 37 37 37 37
Char. of association
I rad Ceratophyllum submersum L. 3 3 5 4 4
Char. of upper units
I nat Lemna minor L. 5 5 3 2 4
I nat Lemna gibba L. + + + + 4
Potamogetonetea units
I rad Callitriche obtusangula Le Gall 1 + 2 1 4
I rad Ranunculus aquatilis L. 1 1 + 1 4
I rad Ranunculus rionii Lagger . . . + 1
Other species
H caesp Alopecurus aequalis Sobol. 1 . + + 3
G rhiz Glyceria notata Chevall. + . . . 1
Table 5.

Potamogetonetum natantis Hild 1959.

Relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Presence
Altitude (m a.s.l.) 1002 950 1285 925 478 368 378 652 790 503 1323 950 953 953 707 692 757 741 868 868
Life Plot size (mq) 10 10 8 8 10 10 10 10 15 10 6 6 5 5 4 5 10 5 5 5
Form Total cover (%) 90 80 80 100 80 85 90 80 100 100 100 100 100 100 100 80 100 100 90 90
Height of vegetation (cm) 250 200 100 150 250 250 200 250 100 150 50 100 150 150 150 100 150 150 120 120
N° species for relevé 2 1 1 1 1 1 1 1 1 1 3 3 3 3 4 2 3 3 3 2
Localities (see Suppl. material 1, Table 1) 20 77 75 12 13 15 14 21 60 47 16 77 23 23 26 59 64 63 19 19
Char. of association
I rad Potamogeton natans L. 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 4 5 5 5 5 20
Potamogetonetea units
I rad Ranunculus rionii Lagger . . . . . . . . . . . . + . . . 2 1 + 1 5
I rad Potamogeton pusillus L. + . . . . . . . . . . . . . 1 . . . . . 2
I rad Ranunculus peltatus Schrank . . . . . . . . . . . . 2 1 . . . . . . 2
I rad Callitriche obtusangula Le Gall . . . . . . . . . . 1 . . . . . . . . . 1
I rad Potamogeton trichoides Cham. et Schltdl. . . . . . . . . . . . . . + . . . . . . 1
I rad Ranunculus aquatilis L. . . . . . . . . . . . . . . 1 . . . . . 1
I rad Callitriche brutia Petagna . . . . . . . . . . . . . . + . . . . . 1
Other species
G rhiz Glyceria notata Chevall. . . . . . . . . . . 2 1 . . . . . 1 . . 3
G rhiz Typha angustifolia L. . . . . . . . . . . . . . . . 1 1 . . . 2
I nat Lemna minor L. . . . . . . . . . . . 1 . . . . . . . . 1
G rhiz Phragmites australis (Cav.) Trin. ex Steud. . . . . . . . . . . . . . . . . . . + . 1
Table 6.

Potamogetonetum pusilli von Soó 1927.

Relevé number 1 2 3 4 5 6 7 Presence
Altitude (m a.s.l.) 638 707 678 678 620 707 620
Life Plot size (mq) 5 5 4 5 5 5 5
Form Total cover (%) 100 100 100 100 100 100 90
Height of vegetation (cm) 35 35 30 30 40 30 45
N° species for relevé 4 4 4 4 5 5 4
Localities (see Suppl. material 1, Table 1) 6 26 1 1 5 26 5
Char. of association
I rad Potamogeton pusillus L. 5 5 5 5 5 5 5 7
Potamogetonetea units
I rad Ranunculus aquatilis L. . 1 2 1 + 1 1 6
I rad Callitriche brutia Petagna . + . . . + . 2
I rad Potamogeton natans L. . 1 . . . . . 1
Other species
G rhiz Glyceria notata Chevall. 2 . + 1 1 + + 6
G rhiz Eleocharis palustris (L.) Roem. et Schult. 1 . . . + + + 4
Chara sp. . . + + . . . 2
G rhiz Juncus articulatus L. 2 . . . + . . 2
Table 7.

Potamogetonetum pectinati Carstensen ex Hilbig 1959.

Relevé number 1 2 3 4 5 6 7 8 Presence
Altitude (m a.s.l.) 464 1002 543 566 578 2 547 637
Life Plot size (mq) 20 10 10 10 10 7 5 10
form Total cover (%) 100 90 100 100 80 100 100 100
Height of vegetation (cm) - 250 200 250 200 150 200 250
N° species for relevé 4 5 3 2 1 1 3 4
Localities (see Table 1) 81 20 58 53 7 80 55 52
Char. of association
I rad Potamogeton pectinatus L. 4 5 5 5 5 5 5 5 8
Potamogetonetea units
I rad Ranunculus aquatilis L. 3 . 1 . . . . . 2
I rad Potamogeton trichoides Cham. et Schltdl. . 1 . . . . . + 2
I rad Potamogeton natans L. . + . . . . . . 1
I rad Ranunculus rionii Lagger . + . . . . . . 1
Other species
Chara sp. 4 1 . . . . 1 . 3
G rhiz Phragmites australis (Cav.) Trin. ex Steud. . . . + . . . + 2
G rhiz Typha angustifolia L. . . . . . . + + 2
Cladophora sp. 2 . . . . . . . 1
G rhiz Glyceria notata Chevall. . . + . . . . . 1
Table 8.

Groenlandietum densae Segal ex Schipper et al. in Schaminée et al. 1995.

Relevé number 1 2 3 4 Presence
Altitude (m a.s.l.) 950 950 964 964
Life Plot size (mq) 4 5 1 1
form Total cover (%) 80 80 80 80
Height of vegetation (cm) 30 30 40 35
N° species for relevé 3 4 4 5
Localities (see Suppl. mat. 1, Table 1) 77 77 8 8
Char. of association and alliance
I rad Groenlandia densa (L.) Fourr. 4 4 4 4 4
Char. of Potamogetonion and upper units
I rad Callitriche obtusangula Le Gall 1 1 . . 2
Other species
G rhiz Glyceria notata Chevall. + 1 2 1 4
Chara sp. . . + 1 2
G rhiz Juncus articulatus L. . . + 1 2
H scap Lythrum junceum Banks et Sol. . + . . 1
H scap Mentha aquatica L. . . . + 1
Table 9.

Ranunculetum rionii Hejný et Husák in Dykyjová et Květ 1978.

Relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Presence
Altitude (m a.s.l.) 863 130 891 1071 1002 863 863 868 652 652 784 516 745 745 585 773 996 487 709 787 787 704 704 595 235
Life Plot size (mq) 5 5 4 5 10 4 5 5 5 10 5 10 5 5 6 15 2 2 3 7 4 5 5 8 5
Form Total cover (%) 100 80 95 100 100 100 100 100 100 100 100 100 100 100 95 100 85 100 95 100 100 100 100 100 100
Height of vegetation (cm) 50 25 50 130 50 100 100 60 40 60 100 60 90 70 100 40 50 50 90 50 60 40 40 30 25
N° species for relevé 4 3 4 3 4 4 4 5 5 4 3 4 3 3 4 2 3 2 3 5 6 5 5 5 5
Localities (see Suppl. material 1, Table 1) 9 85 34 32 20 18 18 19 21 21 54 56 62 62 70 61 25 33 69 57 57 2 2 35 3
Char. of association
I rad Ranunculus rionii Lagger 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 25
Potamogetonetea units
I rad Potamogeton pectinatus L. . . 1 1 1 . . . . . . . . . . . . . . . . . . . . 3
I rad Potamogeton natans L. . . . . + . 1 1 . . . . . . . . . . . . . . . . . 3
I rad Callitriche obtusangula Le Gall . . . . . . . . . . . . . . . . . 1 1 . . . . . . 2
I rad Potamogeton pusillus L. . . . . . . . . . . . 1 . . . . . . . . . . . . . 1
I rad Ranunculus aquatilis L. . . . . . . . . . . . . . . . . . . . . . . + . . 1
Othes species
G rhiz Glyceria notata Chevall. . . . + . . . . . . + . + 1 1 1 1 . 2 2 1 2 1 2 2 14
H scap Mentha pulegium L. . . . . + . . . 1 . . + . . + . . . . + 1 . . 1 1 8
I rad Alisma lanceolatum With. . 1 . . . 1 + + 1 . . . . . . . . . . 1 2 . . . . 7
G rhiz Juncus articulatus L. . . 1 . . . + . + 1 . . . . + . . . . . + . . . . 6
Chara sp. 1 2 . . . . . . . . . . . . . . . . . . . 1 1 . 1 5
H scap Mentha aquatica L. . . 1 . . + . + . . . . + 1 . . . . . . . . . . . 5
G rhiz Eleocharis palustris (L.) R. et S. . . . . . . . + . 1 . . . . . . . . . . . 1 1 . . 4
G rhiz Typha angustifolia L. . . . . . + . . . . 1 1 . . . . . . . . . . . . . 3
G rhiz Juncus effusus L. . . . . . . . . + + . . . . . . . . . . . . . . . 2
T rept Coronopus squamatus (Forssk.) Asch. . . . . . . . . . . . . . . . . + . . . . . . 1 . 2
G rhiz Bolboschoenus maritimus (L.) Palla . . . . . . . . . . . . . . . . . . . 1 + . . . . 2
H scap Oenanthe fistulosa L. 1 . . . . . . . . . . . . . . . . . . . . . . . . 1
G rhiz Persicaria amphibia (L.) Delarbre 1 . . . . . . . . . . . . . . . . . . . . . . . . 1
G rhiz Paspalum distichum L. . . . . . . . . . . . . . . . . . . . . . + . . . 1
H scap Rumex crispus L. . . . . . . . . . . . . . . . . . . . . . . . 1 . 1
H scap Ranunculus angulatus C. Presl . . . . . . . . . . . . . . . . . . . . . . . . + 1
Table 10.

Ranunculetum aquatilis Géhu 1961.

Relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Presence
Altitude (m a.s.l.) 797 800 543 707 704 678 678 474 474 842 738 643 890 890
Life Plot size (mq) 3 3 6 5 3 8 6 5 5 3 5 5 6 4
Form Total cover (%) 100 100 100 100 90 90 100 95 100 100 100 100 100 100
Height of vegetation (cm) 35 25 35 100 30 30 35 50 45 20 130 60 60 70
N° species for relevé 6 3 3 5 6 4 4 5 5 6 5 3 6 6
Localities (see Suppl. material 1, Table 1) 27 28 58 26 2 1 1 39 39 42 72 29 37 37
Char. of association
I rad Ranunculus aquatilis L. 5 4 5 5 4 4 5 4 5 4 5 5 4 5 14
Potamogetonetea units
I rad Callitriche stagnalis Scop. . . . . . . . 1 1 2 3 2 . . 5
I rad Ranunculus rionii Lagger 1 . . . 1 . 1 + . . . . . 4
I rad Potamogeton pusillus L. . . . 2 . 1 1 . . . . . . . 3
I rad Callitriche brutia Petagna . . . + . . . . . . 1 . . . 2
I rad Callitriche obtusangula Le Gall . . . . . . . . . . . . 2 3 2
I rad Potamogeton pectinatus L. . . 1 . . . . . . . . . . . 1
I rad Potamogeton natans L. . . . . . . . + . . . . . . 1
Others species
G rhiz Glyceria notata Chevall. 1 2 1 + 2 2 1 . . 2 1 1 1 1 12
H scap Mentha pulegium L. 1 . . . + . + . . + . . . . 4
G rhiz Eleocharis palustris (L.) Roem. et Schult. . . . 1 1 . . 1 1 . . . . . 4
H caesp Alopecurus aequalis Sobol. . . . . . . . . . . 1 . 1 + 3
G rhiz Juncus articulatus L. + 1 . . . . . . . . . . . . 2
I rad Alisma lanceolatum With. . . . . 1 1 . . . . . . . . 2
I rad Ceratophyllum submersum L. . . . . . . . . . . . . 2 1 2
I nat Lemna minor L. . . . . . . . . . . . . 2 2 2
H scap Rumex pulcher L. + . . . . . . . . . . . . . 1
H bienn Jacobaea erratica (Bertol.) Fourr. . . . . . . . . + . . . . . 1
T scap Ranunculus ophioglossifolius Vill. . . . . . . . . . 1 . . . . 1
H scap Rumex conglomeratus Murray . . . . . . . . . + . . . . 1
Table 11.

Ranunculetum peltati subass. typicum Horst, Krausch & Müller-Stoll 1966 em. Weber-Oldecop 1969 (a: Rels 1–7) and subass. ranunculetosum rionii subass. nova (b: Rels 8–14) (*holotypus rel. 13).

a b Presence
Relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13* 14
Altitude (m a.s.l.) 777 248 248 197 197 934 953 953 925 925 863 863 859 859
Life Plot size (mq) 4 5 5 5 4 4 5 5 5 5 3 4 5 5
form Total cover (%) 100 100 100 100 100 100 100 100 100 95 90 100 100 100
Height of vegetation (cm) 45 45 40 35 35 40 60 40 30 30 35 35 25 20
N° species for relevé 4 4 3 4 4 5 5 5 5 5 7 6 5 6
Localities (see Suppl. material 1, Table 1) 71 82 82 83 83 11 23 23 40 40 9 9 38 38
Char. subass. Typicum
I rad Ranunculus peltatus Schrank 5 4 5 4 4 5 5 5 5 4 5 5 5 5 14
Char. subass. ranunculetosum rionii
I rad Ranunculus rionii Lagger . . . . . . . + 1 2 1 1 2 2 7
H scap Oenanthe fistulosa L. . . . . . 1 . . + 1 + 1 1 + 7
I rad Alisma lanceolatum With. . . . . . . . . . . + + 2 + 4
Potamogetometea units
I rad Potamogeton trichoides Cham. et Schltdl. . . . . . . 1 + . . . . . . 2
I rad Callitriche brutia Petagna 2 . . . . . . . . . . . . . 1
I rad Potamogeton natans L. . . . . . . + . . . . . . . 1
Othes species
G rhiz Glyceria notata Chevall. 2 2 1 2 1 + + + 1 2 + + 1 + 14
G rhiz Eleocharis palustris (L.) Roem. et Schult. . . . + 1 1 + + . . + + . . 7
I nat Lemna gibba L. 1 2 2 . . . . . . . . . . . 3
H scap Mentha pulegium L. . 1 . . . . . . + + . . . . 3
T scap Myosotis sicula Guss. . . . + 1 . . . . . . . . . 2
H scap Galium debile Desv. . . . . . 1 . . . . . . . . 1
H scap Mentha aquatica L. . . . . . . . . . . + . . . 1
H scap Veronica anagallis-aquatica L. . . . . . . . . . . . . . + 1
Table 12.

Lemno-Callitrichetum obtusangulae (Philippi 1978) Passarge 1992.

Relevé number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Presence
Altitude (m a.s.l.) 1323 1326 769 950 868 783 783 487 772 855 530 530 936 908 863 890 890
Life Plot size (mq) 2 3 3 4 3 5 5 2 10 5 8 6 3 3 3 5 4
form Total cover (%) 100 100 90 90 100 100 100 100 70 90 100 100 100 90 100 100 100
Height of vegetation (cm) 30 50 20 40 20 5 50 25 35 25 30 30 15 40 35 50 60
N° species for relevé 3 2 3 3 4 2 3 4 5 4 6 6 4 4 4 5 3
Localities (see Suppl. mat. 1, Table 1) 16 17 41 77 19 22 22 33 68 36 65 65 44 78 76 37 37
Char. of association
I rad Callitriche obtusangula Le Gall 5 5 5 5 5 5 5 5 4 5 5 5 5 5 5 4 5 17
I nat Lemna minor L. . . . . . . . . . . 1 1 . 1 1 3 2 6
Potamogetonetea units
I rad Ranunculus rionii Lagger . . . . . . 1 1 . . . . . . . . . 2
I rad Potamogeton natans L. 1 1 . . . . . . . . . . . . . . . 2
I rad Ranunculus aquatilis L. . . . . . . . . . . . . . . . 1 . 1
Othes species
I rad Glyceria notata Chevall. 1 . 2 1 . . . . 2 2 2 1 1 1 2 . . 10
H scap Mentha aquatica L. . . . . + . . . . . + + 1 + 1 . . 6
H scap Mentha pulegium L. . . 1 . . + + 1 . 1 . . . . . . . 5
T scap Ranunculus ophioglossifolius Vill. . . . . . . . . 1 2 1 + . . . . . 4
T scap Ranunculus muricatus L. . . . . . . . + + . . . . . . . . 2
H scap Rumex conglomeratus Murray . . . . . . . . . . 1 + . . . . . 2
I rad Ceratophyllum submersum L. . . . . . . . . . . . . . . . 1 1 2
H scap Lythrum junceum Banks et Sol. . . . + . . . . . . . . . . . . . 1
I rad Alisma lanceolatum With. . . . . 1 . . . . . . . . . . . . 1
G rhiz Eleocharis palustris (L.) Roem. et Schult. . . . . + . . . . . . . . . . . . 1
H scap Rumex pulcher L. . . . . . . . . + . . . . . . . . 1
I rad Ranunculus omiophyllus Ten. . . . . . . . . . . . . 1 . . . . 1
H caesp Alopecurus aequalis Sobol. . . . . . . . . . . . . . . . + . 1
Table 13.

Callitriche stagnalis community.

Relevé number 1 2 3 4 5 Presence
Altitude (m a.s.l.) 1030 801 1028 898 738
Life Plot size (mq) 5 2 2 5 5
form Total cover (%) 90 90 85 80 95
Height of vegetation (cm) 15 10 10 10 10
N° species for relevé 4 4 4 3 7
Localities (see Suppl. material 1, Table 1) 48 24 49 45 72
Diff. species
I rad Callitriche stagnalis Scop. 4 4 4 5 4 5
Potamogetonea units
I rad Ranunculus omiophyllus Ten. 1 1 1 1 . 4
I rad Ranunculus aquatilis L. . . . . 1 1
Othes species
I rad Glyceria notata Chevall. 2 2 3 2 3 5
I rad Veronica anagallis-aquatica With. 1 . . . . 1
H scap Lythrum junceum Banks et Sol. . 1 . . . 1
H scap Mentha pulegium L. . . + . . 1
H caesp Alopecurus aequalis Sobol. . . . . 1 1
H scap Oenanthe aquatica (L.) Poir. . . . . 1 1
I nat Lemna gibba L. . . . . + 1
T scap Ranunculus ophioglossifolius Vill. . . . . + 1
Table 14.

Junco bufonii-Ranunculetum omiophylli ass. nov. (*holotypus rel. 8).

Relevé number 1 2 3 4 5 6 7 8* 9 10 11 Presence
Altitude (m a.s.l.) 708 710 856 842 936 1015 898 801 797 1030 1028
Life Plot size (mq) 3 3 2 2 3 2 5 3 5 3 2
form Total cover (%) 100 90 80 85 100 85 70 75 100 90 85
Height of vegetation (cm) 15 15 10 10 20 10 10 10 15 15 10
N° species for relevé 6 5 5 6 5 9 5 6 6 8 7
Localities (see Suppl. material 1, Table 1) 66 67 51 42 44 50 45 24 46 48 49
Char. of association
I rad Ranunculus omiophyllus Ten. 5 5 5 5 5 5 4 5 4 5 5 11
T caesp Juncus bufonius L. 2 1 2 1 . 2 3 1 . + 1 9
Isoëto-Nanojuncetea units
T caesp Poa infirma Kunth 1 1 + 1 . + 1 1 . . . 7
H scap Mentha pulegium L. 1 . . . . . 2 1 . . 1 4
T scap Isolepis cernua (Vahl.) Roem. et Schult. . . . . . + . . . . . 1
T scap Trifolium micranthum Viv. . . . . . . . 1 . . . 1
T scap Ranunculus muricatus L. . . . . . . . . 1 . . 1
T scap Ranunculus angulatus C. Presl . . . . . . . . . + . 1
Callitr. hamulatae-Ranunculetalia aquatilis units
I rad Callitriche stagnalis Scop. . . . . . . 1 2 2 1 + 5
I rad Callitriche obtusangula Le Gall . . . . 1 + . . . . . 2
I rad Ranunculus aquatilis L. . . . 1 . . . . . . . 1
Othes species
G rhiz Glyceria notata Chevall. . . . 1 1 + . . 2 1 1 6
H scap Lythrum junceum Banks et Sol. 1 1 1 . + 1 . . . . . 5
G rhiz Cyperus badius Desf. . . 1 . . . . . . + 1 3
H scap Rumex conglomerates Murray . . . + . . . . 1 . . 2
H caesp Juncus effusus L. . . . . + 1 . . . . . 2
G Rhiz Juncus articulatus L. . . . . . 1 . . . 1 . 2
H rept Trifolium repens L. 1 . . . . . . . . . . 1
H scap Rumex pulcher L. . 1 . . . . . . . . . 1
H bienn Jacobaea erratica (Bertol.) Fourr. . . . . . . . . + . . 1
I rad Veronica anagallis-aquatica With. . . . . . . . . . + . 1
H caesp Juncus inflexus L. . . . . . . . . . . 1 1
Table 15.

Synoptic table of the identified associations and communities belonging to class Lemnetea minoris in Western Sicily: 1) Lemnetum minoris von Soó 1927; 2) Lemnetum gibbae Miyawaki et J. Tüxen 1960; 3) Lemna minuta community; 4) Potamogetono-Ceratophylletum submersi Pop 1962.

Association number 1 2 3 4
Table number 1 2 3 4
Number of Relevés 7 11 4 4
Char. of association and upper units of the cl. Lemnetea
Lemna minor L. 100 18 . 100
Lemna gibba L. . 100 . 100
Lemna minuta Kunth . . 100 .
Ceratophyllum submersum L. . . . 100
Trasgr. species of cl. Potamogetonetea
Callitriche obtusangula Le Gall 71 18 . 100
Ranunculus rionii Lagger 14 . . 25
Ranunculus aquatilis L. . 36 . 100
Potamogeton trichoides Cham. et Schltdl. . 9 . .
Other species
Glyceria notata Chevall. 100 . . 25
Mentha aquatica L. 57 . . .
Chara sp. 29 . . .
Ranunculus ophioglossifolius Vill. 29 . . .
Equisetum telmateia Ehrh. 14 . . .
Alopecurus aequalis Sobol. . 36 . 75
Bolboschoenus maritimus (L.) Palla . 9 . .
Mentha pulegium L. . 9 . .
Paspalum distichum L. . . 75 .

Conclusions

New insights on the aquatic communities of the Lemnetea (Table 15) and Potamogetonetea (Table 16) classes, characterized by the predominance of threatened and rare macrophytes, have been offered for western Sicily. The study puts in evidence the presence of a rich diversified aquatic and wet vegetation, namely four free-floating communities (ascribed to two different alliances, Lemnion minoris and Stratiotion – Tables 14), and 11 rooted plant assemblages (belonging to four alliances, Potamogetonion, Nymphaeion albae, Ranunculion aquatilis, and Ranunculion omiophyllo-hederacei – Tables 514).

This relative high vegetation diversity is probably mainly to be attributed to the wide ecological range of small-standing water ecosystems investigated, that includes both natural and artificial ecosystems, as well as permanent and temporary ponds, reservoirs, situated in turn on a variety of geo-lithological substrates (limestones, quartzarenites, clays, gypsum of the evaporitic series of the Sicilian interior) and altitudes, from the few meters a.s.l. of the mouth of the Carboj River (AG) to the 1,326 m a.s.l. of the Gorgo di Pietra Giordano (PA) (see Suppl. material 1, Table 1). Indeed, origin and hydroperiod of small water ecosistems are pivotal features in driving the complexity of vegetation in wetlands and small water bodies, especially in semi-natural or artificial contexts (Bolpagni and Piotti 2016; Bolpagni 2020).

Among the communities recognized, six are new for the study area (Potamogetono-Ceratophylletum submersi, Potamogetonetum pusilli, Ranunculetum rionii, R. aquatilis, R. peltati, and Lemno-Callitrichetum obtusangulae), and two have been described as new sintaxa: Junco bufonii-Ranunculetum omiophylli and Ranunculetum peltati subass. ranunculetosum rionii. The first is a batrachid community differentiated by annual micro-helophytes (Juncus bufonius and Poa infirma); whereas the second one is another batrachid assemblage differentiated by Ranunculus peltatus and R. rionii, well adapted to strong seasonal water level variations.

The present data greatly broaden the floristic-phytosociological knowledge of the aquatic communities of the largest Mediterranean island, as well as their syntaxonomic, synecological, and distributive features. Our survey allowed almost punctual evaluation of scattered, isolated aquatic habitats that have a relevant conservation value considering the huge pressures exerted by climate change and human activities in the Mediterranean region (Gianguzzi et al. 2013, 2017; Benavent-González et al. 2014; Angiolini et al. 2017; Tomaselli et al. 2020). Thus, the described vegetation includes very peculiar phytocoenoses, although the floristic originality of the aquatic communities monitored is generally low. Despite this, due to their rarity and to the fragmented distribution, vegetation dominated by lemnids or species of the genera Potamogeton or Ranunculus (sect. Batrachium) can be listed among the most endangered plant communities at national and European scale (Bolpagni et al. 2017; Maiorca et al. 2020). However, the study also highlights some critical issues including the presence of the invasive species Lemna minuta. We confirm its strongly invasive character, as shown elsewhere in Italy, especially in eutrophic environments (Ceschin et al. 2016; Lastrucci et al. 2016 and references therein).

To sum up, the present work offers a preliminary overview of the spatial representativeness of macrophyte communities in a rich set of small wetlands and ponds in western Sicily. Despite their very small size, which makes them very sensitive environments, they represent a fundamental component of semi-natural and natural ecosystems, which require adequate protection and monitoring actions in Sicily, and more generally in the Mediterranean region and in the world.

Table 16.

Synoptic table (semplificated) of the identified associations and communities belonging to class Potamogetonetea pectinati in Western Sicily, with companion taxa with less than 20% constancy reported at the end: 5) Potamogetonetum natantis Hild 1959; 6) Potamogetonetum pusilli von Soó 1927; 7) Potamogetonetum pectinati Carstensen ex Hilbig 1959; 8) Groenlandietum densae Segal ex Schipper et al. in Schaminée et al. 1995; 9) Ranunculetum rionii Hejný et Husák in Dykyjová et Květ 1978; 10) Ranunculetum aquatilis Géhu 1961; 11a) Ranunculetum peltati subass. typicum Horst, Krausch & Müller-Stoll 1966 em. Weber-Oldecop 1969; 11b) Ranunculetum peltati subass. ranunculetosum rionii subass. nov.; 12) Lemno-Callitrichetum obtusangulae (Philippi 1978) Passarge 1992; 13) Callitriche stagnalis community; 14) Junco bufonii-Ranunculetum omiophylli ass. nov.

Association number 5 6 7 8 9 10 11a 11b 12 13 14
Supplementary table number 5 6 7 8 9 10 11a 11b 12 13 14
Number of Relevés 20 7 8 4 25 14 7 7 17 5 11
Char. of association, subass. and upper units of the class Potamogetonetea
Potamogeton natans L. 100 14 13 . 12 7 14 . 12 . .
Potamogeton pusillus L. 10 100 . . 4 21 . . . . .
Potamogeton pectinatus L. . . 100 . 12 7 . . . . .
Groenlandia densa (L.) Fourr. . . . 100 . . . .
Ranunculus rionii Lagger 25 . 13 . 100 29 . 100 12 . .
Ranunculus aquatilis L. 5 86 25 . 4 100 . . 6 20 9
Ranunculus peltatus Schrank 10 . . . . . 100 100 . . .
Callitriche obtusangula Le Gall 5 . . 50 8 14 . . 100 . 18
Callitriche stagnalis Scop. . . . . . 36 . . . 100 45
Ranunculus omiophyllus Ten. . . . . . . . . 6 80 100
Other species of the cl. Potamogetonetea
Potamogeton trichoides Cham. et Schltdl. 5 . 25 . . . 14 14 . . .
Callitriche brutia Petagna 5 29 . . . 14 14 . . . .
Trasg. of the cl. Isoëto-Nanojuncetea
Mentha pulegium L. . . . . 32 29 14 28 29 20 36
Juncus bufonius L. . . . . . . . . . . 81
Poa infirma Kunth . . . . . . . . . . 64
Isolepis cernua (Vahl.) Roem. et Schult. . . . . . . . . . . 9
Trifolium micranthum Viv. . . . . . . . . . . 9
Ranunculus muricatus L. . . . . . . . . 12 . 9
Ranunculus angulatus C. Presl . . . . . . . . . . 9
Other species
Glyceria notata Chevall. 15 86 13 100 56 86 100 100 59 100 55
Eleocharis palustris (L.) Roem. et Schult. . 57 . . 16 29 57 43 6 . .
Juncus articulatus L. . 29 . 50 24 14 . . . . 18
Chara sp. . 29 38 50 20 . . . . . .
Typha angustifolia L. 10 . 25 . 12 . . . . . .
Lemna minor L. 5 . . . . 14 . . 36 . .
Phragmites australis (Cav.) Trin. ex Steud. 5 . 25 . . . . . . . .
Mentha aquatica L. . . . 25 20 . . 14 36 . .
Lythrum junceum Banks et Sol. . . . 25 . . . . 6 20 45
Alisma lanceolatum With. . . . . 28 14 . 57 6 . .
Oenanthe fistulosa L. . . . . 4 . 14 86 . . .
Juncus effusus L. . . . . 8 . . . . . 18
Alopecurus aequalis Sobol. . . . . . 21 . . 6 20 .
Ranunculus ophioglossifolius Vill. . . . . . 7 . . 25 20 .
Rumex pulcher L. . . . . . 7 . . 6 . 9
Rumex conglomeratus Murray . . . . . 7 . . 12 . 18
Ceratophyllum submersum L. . . . . . 14 . . 12 . .
Jacobaea erratica (Bertol.) Fourr. . . . . . 7 . . . . 9
Lemna gibba L. . . . . . . 43 . . 20 .
Veronica anagallis-aquatica L. . . . . . . . 14 . 20 9
Myosotis sicula Guss. . . . . . . 29 . . . .
Cyperus badius Desf. . . . . . . . . . . 27
Taxa with less than 20% constancy and presence in singular table: Tab. 6) Cladophora sp. 13%; Tab. 8) Coronopus squamatus 8%, Bolboschoenus maritimus 8%, Persicaria amphibia 4%, Paspalum distichum 4%, Rumex crispus 4%, Ranunculus angulatus 4%; Tab. 11a) Galium debile 14%; Tab. 13) Oenanthe aquatica 20%; Tab. 14) Juncus inflexus 9%, Trifolium repens 9%.

Syntaxonomical scheme

LEMNETEA MINORIS O. de Bolòs et Masclans 1955

Lemnetalia minoris O. de Bolòs et Masclans 1955

Lemnion minoris O. de Bolòs et Masclans 1955

Lemnetum minoris von Soó 1927

Lemnetum gibbae Miyawaki et J. Tüxen 1960

Lemna minuta community

Stratiotion Den Hartog et Segal 1964

Potamogetono-Ceratophylletum submersi Pop 1962

POTAMOGETONETEA PECTINATI Klika in Klika et Novák 1941

Potamogetonetalia Koch 1926

Nymphaeion albae Oberdorfer 1957

Potamogetonetum natantis Hild 1959

Potamogetonion Libbert 1931

Potamogetonetum pusilli von Soó 1927

Potamogetonetum pectinati Carstensen ex Hilbig 1971

Groenlandietum densae Segal ex Schipper et al. in Schaminée et al. 1995

Callitricho hamulatae-Ranunculetalia aquatilis Passarge ex Theurillat in Theurillat et al. 2015

Ranunculion aquatilis Passarge ex Theurillat in Theurillat et al. 2015

Ranunculetum rionii Hejný et Husák in Dykyjová et Květ 1978

Ranunculetum aquatilis Géhu 1961

Ranunculetum peltati Horst, Krausch & Müller-Stoll 1966 em. Weber-Oldecop 1969

typicum

ranunculetosum rionii subass. nov.

Lemno-Callitrichetum obtusangulae (Philippi 1978) Passarge 1992

Callitriche stagnalis community

Ranunculion omiophyllo-hederacei Rivas-Martínez et al. 2002

Junco bufonii-Ranunculetum omiophylli ass. nov.

Bibliography

  • Abbadessa P, Domina G, Mazzola P (2005) Ricerche distributive ed ecologiche sulle Lemnacee siciliane. Quad. Bot. amb. appl. 15(2004): 129–137.
  • Aita L, Martini E, Orsino F (1979) Flora e vegetazione dei laghetti delle Agoraie e zone limitrofe (Appennino Ligure orientale). Lav. Soc. Ital. Biogeogr. 6: 163–229. https://doi.org/10.21426/B66110018
  • Angiolini C, Viciani D, Bonari G, Lastrucci L (2017) Habitat conservation prioritization: A floristic approach applied to a Mediterranean wetland network. Plant Biosyst. 151(4): 598–612. https://doi.org/10.1080/11263504.2016.1187678
  • Azzella MM, Rosati L, Blasi C (2013) Phytosociological survey as a baseline for environmental status assessment: the case of hydrophytic vegetation of a deep volcaniclake. Plant Sociology 50(1): 33–46. https://doi.org/10.7338/pls2013501/04
  • Baldoni M, Biondi E (1993) La vegetazione del medio e basso corso del fiume Esino (Marche - Italia Centrale). Studia Botanica 11: 209–257.
  • Banfi E, Galasso G (2010) La flora esotica lombarda. Museo di Storia Naturale di Milano, Milano, 273 pp.
  • Barbagallo C, Brullo S, Furnari F (1979) Su alcuni aspetti della vegetazione igrofila di Serra del Re (Monti Nebrodi). Pubbl. Ist. Bot. Univ. Catania 2: 1–7.
  • Bartolo G, Brullo S, Marcenò C (1982) La vegetazione costiera della Sicilia sud-orientale. Quaderni C.N.R. AQ/1/226: 1–49.
  • Bartolucci F, Peruzzi L, Galasso G, Albano A, Alessandrini A, Ardenghi NMG, et al. (2018) An updated checklist of the vascular flora native to Italy. Plant Biosyst. 152(2): 179–303. https://doi.org/10.1080/11263504.2017.1419996
  • Benavent-González A, Lumbreras A, Molina JA (2014) Plant communities as a tool for setting priorities in biodiversity conservation: A novel approach to Iberian aquatic vegetation. Biodivers. Conserv. 23: 2135–2154. https://doi.org/10.1007/s10531-014-0709-3
  • Biondi E (2011) Phytosociology today: Methodological and conceptual evolution. Plant Biosystems 145(1): 19–29. https://doi.org/10.1080/1 1263504.2011.602748
  • Biondi E, Bagella S (2005) Vegetazione e paesaggio vegetale dell'arcipelago di La Maddalena (Sardegna nord-orientale). Fitosociologia 42(2) suppl. 1: 3–99.
  • Biondi E, Ballelli S, Allegrezza M, Taffetani F, Frattaroli AR, Guitian J, Zuccarello V (1999) La vegetazione di Campo Imperatore (Gran Sasso d’Italia). Braun-Blanquetia 16: 53–115.
  • Biondi E, Blasi C, Allegrezza M, Anzellotti I, Azzella MM, Carli E, Casavecchia S, Copiz R, Del Vico E, Facioni L, Galdenzi D (2014) Plant communities of Italy: the vegetation prodrome. Plant Biosystems 148(4): 728–814. https://doi.org/10.1080/11263504.2014.948527
  • Biondi E, Vagge I, Baldoni M, Taffetani F (1997) La vegetazione del Parco fluviale regionale del Taro (Emilia-Romagna). Fitosociologia 34: 69–110.
  • Biondi E, Vagge I, Baldoni M, Taffetani F (2004) Biodiversità fitocenotica e paesaggistica dei fiumi dell’Italia centro-settentrionale: aspetti fitosociologici e sinfitosociologici. Studi Trent. Sci. Nat. Acta Biol. 80(2003): 13–21
  • Bolpagni R (2020) Linking vegetation patterns, wetlands conservation, and ecosystem services provision: From publication to application. Aquatic Conserv.: Mar. Freshw. Ecosyst. 30(9): 1734–1740. https://doi.org/10.1002/aqc.3358
  • Bolpagni R, Azzella MM, Agostinelli C, Beghi A, Bettoni E, Brusa G, De Molli C, Formenti R, Galimberti F, Cerabolini BEL (2017) Integrating the water framework directive into the habitats directive: Analysis of distribution patterns of lacustrine EU habitats in lakes of Lombardy (Northern Italy). J. Limnol. 76(S1): 75–83. https://doi.org/10.4081/jlimnol.2017.1627
  • Bolpagni R, Laini A, Stanzani C, Chiarucci A (2018) Aquatic plant diversity in Italy: distribution, drivers and strategic conservation actions. Front. Plant Sci. 9: article 116. https://doi.org/10.3389/fpls.2018.00116
  • Bolpagni R, Piotti A (2015) Hydro-hygrophilous vegetation diversity and distribution patterns in riverine wetlands in an agricultural landscape: a case study from the Oglio River (Po Plain, Northern Italy). Phytocoenologia 45: 69–84. https://doi.org/10.1127/0340-269X/2014/0044
  • Bolpagni R, Piotti A (2016) The importance of being natural in a human-altered riverscape: Role of wetland type in supporting habitat heterogeneity and the functional diversity of vegetation. Limnologica 26: 1168–1183. https://doi.org/10.1002/acq.2604
  • Bolpagni R, Poikane S, Laini A, Bagella S, Bartoli M, Cantonati M (2019) Ecological and Conservation Value of Small Standing-Water Ecosystems: A Systematic Review of Current Knowledge and Future Challenges. Water 11(3): 402. https://doi.org/10.3390/w11030402
  • Bracco F, Buffa G, Ghirelli L, Sburlino G, Zuccarello V (2000) The phytosociological information and the management of the upspring vegetation of the River Sile regional Park (Venetian plain - Northern Italy). Arch. Geobot. 4(1)(1998): 51–57.
  • Bracco F, Panfili E, Sburlino G, Venanzoni R (2007) Il secondo aggiornamento della Lista sintassonomica italiana (2000–2004). Fitosociologia 44(1) suppl. 1: 5–12.
  • Braun-Blanquet J (1964) Pflanzensoziologie, grundzüge der vegetationskunde. Springer Verlag, Wien-New York, 865 pp.
  • Brullo S, Giusso del Galdo G, Minissale P, Spampinato G (2002) Considerazioni sintassonomiche e fitogeografiche sulla vegetazione della Sicilia. Boll. Acc. Gioenia Sci. Nat. Catania 35(361): 325–359.
  • Brullo S, Minissale P, Spampinato G (1994) Studio fitosociologico della vegetatione lacustre dei Monti Nebrodi (Sicilia settentrionale). Fitosociologia 27: 5–50.
  • Brullo S, Minissale P (1998) Considerazioni sintassonomiche sulla classe Isoeto-Nanojuncetea. Itinera Geobotanica 11: 263–290.
  • Brullo S, Ronsisvalle GA (1975) La vegetazione dei Gorghi Tondi e del Lago Preola, presso Mazara del Vallo (Sicilia occidentale). Not. Fitosoc. 10: 45–67.
  • Brullo S, Scelsi F, Spampinato G (2001) La Vegetazione dell’Aspromonte. Laruffa Editore, Reggio Calabria, 372 pp.
  • Brullo S, Sciandrello S (2006) La vegetazione del bacino lacustre “Biviere di Gela” (Sicilia meridionale). Fitosociologia 43(2): 21–40.
  • Buchwald R (1994) Vegetazione e odonatofauna negli ambienti acquatici dell’Italia Centrale. Braun-Blanquetia 11: 1–77.
  • Caldarella O, Gianguzzi L, Gottschlich G (2013a) Hieracium busambarense, a new species of the sect. Grovesiana (Asteraceae) from Sicily (Italy). Plant Biosyst. 148(3): 439–443. https://doi.org/10.1080/11263504.2013.778352
  • Caldarella O, Gianguzzi L (2018) La vegetazione degli ambienti umidi della R.N.O. Bosco Ficuzza (Sicilia Occidentale). In: Book of Abstracts, 52° Congress SISV (Italian Society of Vegetation Science), Catania (Italy), 05-07 april 2018, 42–43.
  • Caldarella O, La Rosa A, Cusimano D, Romano S, Gianguzzi L (2013b) Distribution, ecology and conservation survey on Trifolium michelianum Savi (Fabaceae) in Sicily (Italy). Plant Biosyst. 147(4): 979–990. https://doi.org/10.1080/11263504.2013.790852
  • Caldarella O (2014) Censimento degli ambienti lentici e note distributive sulla flora idro-igrofitica nell’area di Bosco Ficuzza (Sicilia occidentale). Naturalista sicil. 38(2): 193–244.
  • Cañadas EM, Fenu G, Peñas J, Lorite J, Mattana E, Bacchetta G (2014) Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biol. Conserv. 170: 282–291. https://doi.org/10.1016/j.biocon.2013.12.007
  • Cartstensen U (1955) Laichkrautgesellschaften an Kleingewaessern Schleswig-Holstein. Schriften des Naturwissenschaftilichen Vereins für Schlesiwig. Holstein 27: 144–170.
  • Ceschin S, Abati S, Leacche I, Iamonico D, Iberite M, Zuccarello V (2016) Does the alien Lemna minuta show an invasive behaviour outside its original range? Evidence of antagonism with the native L. minor L. in Central Italy. Int. Rev. Hydrobiol. 101(5-6): 173–181. https://doi.org/10.1002/iroh.201601841
  • Ceschin S, Salerno G (2008) La vegetazione del basso corso del Fiume Tevere e dei suoi affluenti (Lazio, Italia). Fitosociologia 45(1): 39–74.
  • Chytrý M (2011) Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic 3. Aquatic and wetland vegetation]. Academia, Praha, 828 pp.
  • Conti F, Abbate G, Alessandrini A, Blasi C (2005) An Annotated Checklist of the Italian Vascular Flora. Palombi Editore, Roma 428 pp.
  • Cook CDK (1986) Ranunculus L. subgen. Batrachium (DC.) A. Gray. In: Castroviejo S, Laínz M, López González G, Montserrat P, Muñoz Garmendia F, Paiva J, Villar L (Eds) Flora Iberica, Vol. I. Real Jardín Botánico CSIC, Madrid, 279–371.
  • Corbetta F, Pirone G (1989) La vegetazione del fiume Tirino (Abruzzo). Arch. Bot. Biogeogr. Ital. 65(3-4): 121–153.
  • De Castro O, Colombo P, Gianguzzi L, Perrone R (2015a) Flower and fruit structure of the endangered species Petagnaea gussonei (Sprengel) Rauschert (Saniculoideae, Apiaceae) and implications for its reproductive biology. Plant Biosyst. 149(6): 1042–1051. https://doi.org/10.1080/11263504.2015.1014007
  • De Castro O, Gianguzzi L, Carucci F, De Luca A, Gesuele R, Guida M (2015b) Old sleeping Sicilian beauty: seed germination in the paleoendemic Petagnaea gussonei (Sprengel) Rauschert (Saniculoideae, Apiaceae). Plant Biosyst. 17(5): 1095–1098. https://doi.org/10.1111/plb.12333
  • De Castro O, Senatore F, Rigano D, Formisano C, Cennamo P, Gianguzzi L (2008) Composition of the essenthial oil of Petagnaea gussonei (Sprengel) Rauschert, a relict species from Sicily (Southern Italy). Flavour Fragr. J. 23: 172–177. https://doi.org/10.1002/ffj.1870
  • Desfayes M (2008) Flore vasculaire herbacée des eaux douces et des milieux humides de la Sardaigne. Fl. Medit. 18: 1–89.
  • Desfayes M (2011) Notula 1778. Ranunculus aquatilis L. (Ranunculaceae). Inform. Bot. Ital. 43(1): 123–150.
  • Doll R (1991) Die Pflanzengesellschaften der stehenden Gewässer in Mecklenburg-Vorpommern. Teil I. 3. Potamogetonetea Tx. et PRSG. 42 – Laichkrautgesellschaften. Feddes Repert. 102(3-4): 217–317. https://doi.org/10.1002/fedr.19911020310
  • Dubyna DV (2006) Vyshcha vodna roslynnist. (Higher aquatic vegetation). Pfitosociocenter, Kyïv, 412 pp.
  • Felzines JC (2012) Contribution to the prodrome of the vegetations of France: Lemnetea minoris Tüxen ex O. Bolòs & Masclans 1955. J. Bot. Soc. Bot. France 59: 189–240.
  • Felzines JC (2016) Contribution au prodrome des végétations de France: les Potametea Klika in Klika & V. Novák 1941. Doc. Phytosoc. 3: 218–437.
  • Ferrez Y, Bailly G, Beaufils T, Collaud R, Caillet M, Fernez T, Gillet F, Guyonneau J, Hennequin C, Royer JM, Schmitt A, Vergon-Trivaudey MJ, Vadam JC, Vuillemenot M (2011) Synopsis des groupements végétaux de Franche-Comté. Les nouvelles Archives de la Flore jurassienne et du nord-est de la France, n° spécial 1: 1–282.
  • Galasso G, Conti F, Peruzzi L, Ardenghi NMG, Banfi E, Celesti-Grapow L, et al. (2018) An updated checklist of the vascular flora alien to Italy. Plant Biosyst. 152(3): 556–592. https://doi.org/10.1080/11263504.2018.1441197
  • Géhu JM, Biondi E (1988) Donnees sur la vegetation des ceintures d’atterrissement des lacs Alimini (Salento, Italia). Doc. Phytosoc. 11: 354–380.
  • Géhu JM, Meriaux JL (1983) Distribution et caractères phytosociologiques des Renoncules du sous-genre Batrachium dans le Nord de la France. B. Soc. Bot. Fr-Lett. 130(1): 57–67.
  • Géhu JM, Pedrotti F (1992) Lemnetalia-gesellshaften mitteleuropas. Doc. Phytosoc. 14: 367–385.
  • Gerdol R, Piccoli F, Bassi M (1979) Contributo alla conoscenza floristica e vegetazionale degli ambienti umidi del Ferrarese: i maceri. Ann. Univ. Ferrara 2: 1–34.
  • Gerdol R, Piccoli F (1980) La vegetazione di due ambienti umidi del Monte Baldo. Studi Trent. Sc. Nat. Acta Biol. 56(1979): 45–60.
  • Gerdol R, Tomaselli M (1997) Vegetation of wetlands in the Dolomites. Dissertationes Botanicae 281. J Cramer, Berlin-Stuttgart, 197 pp.
  • Gianguzzi L (2006) Flora e vegetazione dei Nebrodi. Itinerari didattici. 2° Ed. : Regione Siciliana, Assessorato Agricoltura e Foreste, Servizi allo Sviluppo, S. Agata di Militello (ME), 233 pp.
  • Gianguzzi L, Caldarella O, Cusimano D, Romano S (2011a) Berberido aetnensis-Crataegion laciniatae, new orophilous pre-forestal alliance of the class Rhamno-Prunetea. Phytocoenologia 41(3): 183–199. https://doi.org/10.1127/0340-269X/2011/0041-0492
  • Gianguzzi L, Caldarella O, Romano S (2011b) First record of Ribes uva-crispa L. (Grossulariaceae) from the Madonie Mts., a new species of the Sicilian flora. Plant Biosyst. 145: 169–174. https://doi.org/10.1080/11263504.2010.542319
  • Gianguzzi L, Cusimano D, Cuttonaro P, Gianguzzi G, Romano S (2014a) Distribution, ecology and conservation survey on the Celtis tournefortii subsp. aetnensis (Celtidaceae-Cannabaceae) populations in Sicily. Webbia 69(2): 325–334. https://doi.org/10.1080/00837792.2014.971586
  • Gianguzzi L, Cusimano D, Cuttonaro P, Romano S (2016) Contribution to the phytosociological characterization of the forest vegetation of the Sicani Mountains (inland of the North-Western Sicily). Plant Sociology 53(1): 5–43. https://doi.org/10.7338/pls2016531/02
  • Gianguzzi L, Cusimano D, Ilardi V, Romano S (2015a) Phytosociological analysis of the Genista sp. pl. garrigues of the Cisto-Lavanduletea and Rosmarinetea officinalis classes in the South-Tyrrhenian area (Mediterranean Region). Plant Biosyst. 149(3): 574–588. https://doi.org/10.1080/11263504.2014.1000425
  • Gianguzzi L, Cusimano D, Ilardi V, Romano S (2013) Distribution, ecology, vegetation and conservation survey on the relictual population of Carex panormitana Guss. (Cyperaceae) in Sicily (Italy). Webbia 68(2): 159–175. https://doi.org/10.1080/00837792.2013.853364
  • Gianguzzi L, Cusimano D, Romano S (2014b) Phytosociological characterization of the Celtis tournefortii subsp. aetnensis microwoods in Sicily. Plant Sociology 51(2): 17–28. https://doi.org/10.7338/pls2014512/02
  • Gianguzzi L, D’Amico A, Troia A (2017) Notes on the distribution, ecology and conservation status of two very rare sedges (Carex, Cyperaceae) rediscovered in Sicily (Italy). Botany Letters 164: 339–349. https://doi.org/10.1080/23818107.2017.1363659
  • Gianguzzi L, La Mantia A (2004) Le serie di vegetazione della Riserva Naturale Orientata “Bosco Ficuzza, Rocca Busambra, Bosco del Cappelliere e Gorgo del Drago” (con Carta della vegetazione in scala 1:20 000). Naturalista sicil. 28(1): 265–326.
  • Gianguzzi L, La Mantia A (2009) Contributo alla conoscenza della vegetazione e del paesaggio vegetale della Riserva Naturale “Monte Cofano” (Sicilia occidentale). Fitosociologia 45(1) suppl. 1: 1–55.
  • Gianguzzi L, Spennati B, La Mantia A (2007) La carta della vegetazione di Monte Carcaci, Sito d’Interesse Comunitario dei Monti Sicani (Sicilia occidentale). Fitosociologia 44(2) suppl. 1: 195–199.
  • Giardina G, Raimondo FM, Spadaro V (2007) A catalogue of plants growing in Sicily. Bocconea 20: 5–582.
  • Görs S (1992) Verband: Nymphaeion Oberd. 57. In: Oberdorfer E (Ed.) Süddeutsche Pflanzengesellschaften. I. Fels-und Mauergesellschaften, alpine Fluren, Wasser-, Verlandungs- und Moorgesellschaften. G Fischer, Jena-Stuttgart-New York, 108–118.
  • Gradstein SR, Smittenberg JH (1977) The hydrophilous vegetation of Western Crete. Vegetatio 34(2): 65–86.
  • Gristina AS, Marcenò C (2009) Dati preliminari sulle fitocenosi aquatiche rinvenute all’interno del SIC “Boschi di Granza” (Sicilia centro-occidentale). Book of abstracts, 104° Congress of Società Botanica Italiana, Campobasso (Italy), 16–19 september 2009, 293.
  • Guarino R, Pasta S (2017) Botanical Excursions in Central and Western Sicily. Field Guide for the 60th IAVS Symposium Palermo, 20-24 June 2017. Palermo University Press, Palermo, 604 pp.
  • Gussone G (1827–28) Florae Siculae Prodromus sive plantarum in Siciliae ulteriori nascentium enumeratiosecundum Systema Linneanum dispositas. Voll. I-II. Ex Regia Typographia, Napoli.
  • Gussone G (1842–1845) Florae Siculae Synopsis exhibens plantas vasculares in Sicilia insulisque adjacentibus hucusque detectas secundum systema Linneanum dispositas. Voll. I & II(1–2). Typ. Tramater, Napoli.
  • Hilbig W (1971) Überischt Über die Pflanzengesellschaften des sÜdlichen Teiles der DDR. I. Die Wasserpflanzengesellschaften. Hercynia 8(1): 4–33.
  • Hrivnák R, Csiky J (2009) Aquatic and marsh plant communities of the Cerová vrchovina Mts. (Slovakia), the Karancs and Medves Regions (Hungary). Thaiszia 19: 71–89.
  • Hrivnák R (2002) Aquatic plant communities in the catchment area of the Ipeľ river in Slovakia and Hungary. Part I. Classes Lemnetea and Charerea fragilis. Thaiszia 12: 25–50.
  • Jarolímek I, Šibík J, Hegedüšová K, Janišová M, Kliment J, Kučera P, Májeková J, Michálková D, Sadloňová J, Šibíková I, Škodová I, Uhlířová J, Ujházy K, Ujházyová M, Valachovič M, Zaliberová M (2008) A list of vegetation units of Slovakia. In: Jarolímek I, Šibík J (Eds) Diagnostic, constant and dominant species of the higher vegetation units of Slovakia. VEDA, Bratislava, 295–329
  • Korotkov KO, Morozova OV, Belonovskaya EA (1991) The USSR vegetation syntaxa prodromus. GE Vilchek, Moscow, 346 pp.
  • Kubalová S (2009) Vodná a močiar na vegetácia alúvia dolného Hrona (jz. Slovensko) Aquatic and marshland vegetation of the lower Hron River alluvium (SW Slovakia). Bull. Slov. Bot. Spoločn. 31(1): 73–82.
  • Landolt E (1986) The family of Lemnaceae - A monographic study. Vol 1. Biosystematic investigations in the family of duckweeds (Lemnaceae). Veröffentlichungen des Geobotanischen Institutes der Eidg. Technische Hochschule, Stiftung Rübel, Zürich. 71(1): 1–566.
  • Landucci F, Acosta ATR, Agrillo E, Attorre F, Biondi E, Cambria VE, Chiarucci A, Del Vico E, De Sanctis M, Facioni L, Geri F, Gigante D, Guarino R, Landi S, Lucarini D, Panfili E, Pesaresi S, Prisco I, Rosati L, Spada F, Venanzoni R (2012) VegItaly: The Italian collaborative project for a national vegetation database. Plant Biosyst. 146: 756–763. https://doi.org/10.1080/11263504.2012.740093
  • Landucci F, Gigante D, Venanzoni R (2011) An application of the Cocktail method for the classification of the hydrophytic vegetation at Lake Trasimeno (Central Italy). Fitosociologia 48(2): 3–22.
  • Lastrucci L, Becattini R (2008) La vegetazione delle aree umide presso Bosco ai Frati (Firenze, Toscana). Atti Soc. tosc. Sci. nat., Mem. Serie B 115: 57–67.
  • Lastrucci L, Bolpagni R, Gianguzzi L, Caldarella O (2019a) Ceratophyllum submersum L. subsp. submersum (Ceratophyllaceae). In Roma-Marzio, F. et al., Nuove segnalazioni floristiche italiane 6. Flora vascolare (47–53). Notiziario della Società Botanica Italiana 3: 77–78.
  • Lastrucci L, Bonari G, Angiolini C, Casini F, Giallonardo T, Gigante D, Landi M, Landucci F, Venanzoni R, Viciani D (2014) Vegetation of Lakes Chiusi and Montepulciano (Siena, central Italy): updated knowledge and new discoveries. Plant Sociology 51(2): 29–55. https://doi.org/10.7338/pls2014512/03
  • Lastrucci L, Ferretti G, Mantarano N, Foggi B (2019b) Vegetation and habitat of conservation interest of the lake Acquato (Grosseto - Central Italy). Plant Sociology 56(1): 19–30. https://doi.org/10.7338/pls2019561/03
  • Lastrucci L, Foggi B, Selvi F, Becattini R (2007) Contributo alla conoscenza della vegetazione e della flora delle aree umide nel comprensorio di Capalbio (Provincia di Grosseto, Italia Centrale). Arch. Geobot. 10(1-2)(2004): 1–30.
  • Lastrucci L, Gonnelli V, Foggi B (2004) Flora e vegetazione di alcune aree umide dell’altopiano della “Pianca” nell’alta Val Marecchia (Provincia di Arezzo, Toscana). Inform. Bot. Ital. 36: 429–442.
  • Lastrucci L, Landucci F, Gonnelli V, Barocco R, Foggi B, Venanzoni R (2012) The vegetation of the upper and middle River Tiber (Central Italy). Plant Sociology 49(2): 29–48. https://doi.org/10.7338/pls2012492/02
  • Lastrucci L, Valentini E, Dell’Olmo L, Vietina B, Foggi B (2015) Hygrophilous vegetation and habitats of conservation interest in the area of the Lake Porta (Tuscany, Central Italy). Atti Soc. tosc. Sci. nat., Mem. , Serie B 122: 131–146. https://doi.org/10.2424/ASTSN.M.2015.12
  • Lastrucci L, Viciani D, Nuccio C, Melillo C (2008) Indagine vegetazionale su alcuni laghi di origine artificiale limitrofi al Padule di Fucecchio (Toscana, Italia Centrale). Ann. Mus. Civ. Rovereto, Sez. Arch., St., Sc. Nat. 23(2007): 169–203.
  • Loidi J, Biurrum I, Herrera M (1997) La Vegetación del centro-septentrional de España. Itinera Geobotanica 9: 161–618.
  • Lojacono-Pojero M (1888–1909) Flora Sicula o descrizione delle piante spontanee o indigenate in Sicilia. Voll. I(1–2), II(1–2) & III. Palermo.
  • Maiorca G, Crisafulli A, Puntillo D, Signorino G, Spampinato G (2020) Wetland vegetation of the Tarsia Lake Regional Nature Reserve (Calabria, Southern Italy). Mediterranean botany 41(1): 67–84. https://doi.org/10.5209/mbot.61002
  • Maiorca G, Spampinato G, Crisafulli A, Cameriere P (2007) Flora vascolare e vegetazione della Riserva Naturale Regionale “Foce del Fiume Crati” (Calabria, Italia meridionale). Webbia 62(2): 121–174. https://doi.org/10.1080/00837792.2007.10670821
  • Marcenò C, Raimondo FM (1977) Osservazioni su alcuni aspetti di vegetazione lacustre nella Sicilia centrale. Giorn. Bot. Ital. 111(1–2): 13–26.
  • Marino P, Castellano G, Bazan G, Schicchi R (2005) Carta del paesaggio vegetale e della biodiversità dei Monti Sicani sud-orientali (Sicilia centro-occidentale). Quad. Bot. ambient. appl. 16: 3–60.
  • Marrone F, Naselli-Flores L (2011) Primo reperto di una Lenticchia d’acqua alloctona in Sicilia: Lemna minuta Kunth (Araceae, Lemnoideaee). Naturalista sicil. 35(2): 179–185.
  • Matuszkiewicz W (2005) Przewodnik do oznaczania zbiorowisk roślinnych Polski. Vademecum Geobotanicum 3. Wydawnictwo Naukowe PWN, Warszawa, 537 pp.
  • Meriaux JL, Verdevoye P (1983) Donnees sur le Callitrichetum obtusangulae Seibert 1962 (Synfloristique, syntaxonomie, synécologie et faune associée). Colloq. Phytosociol. 10(1981): 45–68.
  • Meriaux JL (1983) La classe des Potametea dans le nordouest de la France. Colloq. Phytosociol. 10(1981): 115–127.
  • Minissale P, Molina JA, Sciandrello S (2017) Pilularia minuta Durieu (Marsileaceae) discovered in South-Eastern Sicily: new insights on its ecology, distribution and conservation status. Botany Letters 164(3): 197–208. https://doi.org/10.1080/23818107.2017.1357051
  • Minissale P, Spampinato G (1990) Osservazioni fitosociologiche sul Pantano Gurna presso Mascali (Sicilia orientale). Boll. Acc. Gioenia Sci. Nat. Catania 23(336): 317–336.
  • Montanari C, Guido M (1980) La vegetazione idro-igrofila di alcune conche lacustri del versante nord di Monte Ragola (alta Val Nure, Appennino ligure-piacentino). Arch. Bot. Biogeogr. Ital. 56(1–2): 13–42.
  • Mucina L, Bültmann H, Dierßen K, Theurillat J, Raus T, Čarni A, et al. (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl. Veg. Sci. 19: 3–264. https://doi.org/10.1111/avsc.12257
  • Müller T (1977) Klasse: Lemnetea R. Tx. 1955 (Lemnetea minoris). In Oberdorfer E (Ed) SüddeutschePflanzengesellschaften 1. G Fischer, Stuttgart-New York, 67–77
  • Musarella MC, Mendoza-Fernández AJ, Mota JF, Alessandrini A, Bacchetta G, Brullo S, et al. (2018) Checklist of gypsophilous vascular flora in Italy. PhytoKeys 103: 61–82. https://doi.org/10.3897/phytokeys.103.25690
  • Ninot JM, Carreras J, Carrillo E, Vigo J (2000) Syntaxonomic conspectus of the Vegetation of Catalonia and Andorra. I: hygrophilous herbaceous communities. Acta Bot. Barc. 46: 191–237.
  • Nowak A, Nowak S, Czrniawska-Kusza I (2007) Rare and threatened pondweed communities in anthropogenic water bodies of Opole Silesia (SW Polland). Acta Soc. Bot. Pol. 76(2): 151–163. https://doi.org/10.5586/asbp.2007.019
  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) Vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan
  • Passarge H (1992) Mitteleuropbäische Potamogetonetea I. Phytocoenologia 20(4): 489–527.
  • Pedrotti F (2003) Il Lago ed il suo biotopo. In: Andreotti G, Cainelli G, Maschio R (Eds) Atti convegno Il lago della Serraia: verso il suo recupero, Baselega di Pinè (Italy), 18 may 2002, 41–44.
  • Piccoli F (1998) Flora e vegetazione. Analisi delle specie e comunità. In: Tinarelli R, Tosetti T (Eds) Zone umide della pianura bolognese: inventario e aspetti naturalistici e ambientali. Istituto per i beni artistici, culturali e naturali della Regione Emilia-Romagna, Bologna, 43–51.
  • Pignatti S, Guarino R, La Rosa M (2017–2019) Flora d'Italia. 2nd edition. Edagricole di New Business Media, Milano
  • Pignatti S (1982) Flora d’Italia. Voll. 1-3. Edagricole, Bologna.
  • Pingitore G, Tomasella M, Oriolo G (2013) La vegetazione acquatica del piano submontano, montano, subalpino e alpino dell'Italia Nord-Orientale. Gortania 35: 17–34.
  • Pizarro J (1995) Contribución al estudio taxonómico de Ranunculus L. subgen. Batrachium (DC.) A. Gray (Ranunculaceae). Lazaroa 15: 21–113.
  • Pott R (1995) Die Pflanzengesellschaften Deutschlands. E. Ulmer, Stuttgart, 622 pp.
  • Preston CD (1995) Pondweeds of Great Britain and Ireland. BSBI Handbook 8. London: Bot. Soc. of the British Isles.
  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org
  • Raimondo FM, Marino P, Schicchi R (2011) Hydrophytic vegetation aspects in the Nebrodi Mountains (Sicily). Fitosociologia 48(2): 123–128.
  • Reid AJ, Carlson AK, Creed IF, Eliason EJ, Gell PA, Johnson PTJ, Kidd KA, MacCormack TJ, Olden JD, Ormerod SJ, Smol JP, Taylor WW, Tockner K, Vermaire JC, Dudgeon D, Cooke SJ (2019) Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94: 849–873. https://doi.org/10.1111/brv.12480
  • Rivas-Martínez S, Diáz TE, Fernández-Gonzales F, Izco J, Loidi J, Lousã M, Penas A (2002) Vascular plant communities of Spain and Portugal. Addenda to the syntaxonomical checklist of 2001. Itinera Geobotanica 15(1–2): 1–922.
  • Rivas-Martínez S, Fernández-Gonzales F, Loidi J, Lousã M, Penas A (2001) Syntaxonomical Checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobotanica 14(2): 5–341.
  • Rivas-Martínez S (2004) Global Bioclimatic (Clasificación Bioclimática de la Tierra). Phytosociological Research Center, Spain. http://www.globalbioclimatics.org (Versión 27-08-2004).
  • Romano S, Tobia G, Gianguzzi L (2006) Rassegna della flora vascolare dell’Isola di Levanzo (Arcipelago delle Egadi, Canale di Sicilia). Inform. Bot. Ital. 38(2): 481–502.
  • Romanov R, Napolitano T, Van De Weyer K, Troìa A (2019) New records and observations to the Characean flora (Charales, Charophyceae) of Sicily (Italy). Webbia 74(1): 111–119. https://doi.org/10.1080/00837792.2019.1609258
  • Sburlino G, Tomasella M, Oriolo G, Poldini L, Bracco F (2008) La vegetazione acquatica e palustre dell'Italia nord-orientale. 2 – La classe Potametea Klika in Klika et V. Novák 1941. Fitosociologia 45(2): 3–40.
  • Sburlino G, Tomasella M, Oriolo G, Poldini L (2004) La vegetazione acquatica e palustre dell’Italia nord-orientale. 1 – La classe Lemnetea Tűxen ex O. Bolos et Masclans 1955. Fitosociologia 41(1) suppl. 1: 27–42.
  • Schratt L (1993) Potametea. In: Grabherr G, Mucina L (Eds) Die Pflanzengesellschaften Österreichs. Natürliche waldfreie Vegetation. G. Fischer, Jena, 31–44.
  • Schubert R, Hilbig W, Klotz S (1995) Bestimmungsbuch der Pflanzengesellschaften Mittel- und Nordostdeutschlands. Jena-Stuttgart: G. Fischer.
  • Sciandrello S (2009) La vegetazione igrofila dei bacini artificiali della Provincia di Caltanissetta (Sicilia centro-meridionale). Inform. Bot. Ital. 41(1): 53–62.
  • Scoppola A (1982) Considérations nouvelles sur les végétations des Lemnetea minoris (R.Tx. 1955) em. A. Schwabe et R.Tx. 1981 et contribution à l’etude de cette classe en Italie centrale. Doc. Phytosoc. 6: 1–130.
  • Sortino M, Raimondo FM, Marcenò C, Dia G, Genchi C (1977) Phytoecologie de certains milieux humid de Monts Madonie (Sicile centre-septentrionale). Rev. Biol. Ecol. Medit. 4(1): 19–34.
  • Spampinato G, Sciandrello S (2013) La vegetazione e gli habitat. In: Guglielmo A (Ed) I Pantani della Sicilia sud-orientale. Un ponte tra l'Europa e l'Africa. Monforte Editore, Catania, 174 pp.
  • Spampinato G, Sciandrello S, del Galdo G, Puglisi M, Tomaselli V, Cannavò S, Musarella CM (2019) Contribution to the knowledge of Mediterranean wetland biodiversity: Plant communities of the Aquila Lake (Calabria, Southern Italy). Plant Sociology 56(2): 53–68. https://doi.org/10.7338/pls2019562/04
  • Šumberová K (2011a) Vegetace volně plovoucích vodních rostlin (Lemnetea). Vegetation of free floating aquatic plants. In: Chytrý M (Ed.) Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic 3. Aquatic and wetland vegetation]. Academia, Praha, 43–99.
  • Šumberová K (2011b) Vegetace vodních rostlin zakořeněných ve dně (Potametea). Vegetation of aquatic plants rooted in the bottom. In Chytrý M (Ed) Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic 3. Aquatic and wetland vegetation]. Academia, Praha, 100–247.
  • Theurillat JP, Willner W, Fernández‐González F, Bültmann H, Čarni A, Gigante D, Mucina L, Weber H (2020) International Code of Phytosociological Nomenclature. 4th edition. Applied Vegetation Scienze 24(1): 1–62.
  • Tomaselli M, Bernardo L (2006) La vegetazione degli ambienti umidi nei massicci del Sirino-Papa e del Pollino (Italia meridionale). Arch. Geobot. 9(1-2)(2003): 1–18.
  • Tomaselli M, Bolpagni R, Gualmini M, Petraglia A, Longhi D (2006) Studio fitosociologico, cartografia della vegetazione ed analisi dello stato trofico delle acque delle “Paludi del Busatello” (Italia settentrionale). Boll. Mus. Civ. St. Nat. Verona, Botanica-Zoologia 30: 3–37.
  • Tomaselli V, Beccarisi L, Brullo S, Cambria S, Forte L, Minissale P, Veronico G (2020) Phytosociological research on temporary ponds in Apulia (Southern Italy) [Estudio fitosociológico de las charcas temporales de Apulia (sur de Italia)] Mediterranean Botany 41(1): 15–41. https://doi.org/10.5209/mbot.63617
  • Van der Maarel E (1979) Transformation of Cover-Abundance Values in Phytosociology and Its Effects on Community Similarity. Vegetatio 39: 97–114. https://doi.org/10.1007/BF00052021
  • Venanzoni R, Gigante D (2000) Contributo alla conoscenza della vegetazione degli ambienti umidi dell’Umbria. Fitosociologia 37(2): 13–63.
  • Viciani D, Vidali M, Gigante D, Bolpagni R, Villani M, Acosta MTR, et al. (2020) A first checklist of the alien-dominated vegetation in Italy. Plant Sociology 57(1): 29–54. https://doi.org/10.3897/pls2020571/04
  • Zervas D, Tsiripidis I, Bergmeier E, Tsiaoussi V (2020) A phytosociological survey of aquatic vegetation in the main freshwater lakes of Greece. Vegetation Classification and Survey 1: 53–75. https://doi.org/10.3897/VCS/2020/48377

Appendix - Localities and date of relevés

Table 1 - Rels 1-2: C.da Sovarita (Marineo) 03.06.2013; rels 3-4: Margiazzo del Vallone Arcere (Monreale) 02.06.2019; rel. 5: contrada Cannitello (Godrano) 23.04.2019; rel. 6: Portella di Granza (Sclafani Bagni) 25.05.2019; rel. 7: Lago Bomes (Sclafani Bagni) 25.05.2019.

Table 2 - Rel. 1: Torrente Mandrarossa (Menfi) 08.08.2019; rels 2-3: Monte Cofano (Custonaci) [Tab. 3 in Gianguzzi & La Mantia (2008)]; rels 4-5: Case Cuttitta (Godrano) 16.05.2013; rel. 6: Lago Soprano (Serradifalco) [pag. 16 in Marcenò & Raimondo (1977)]; rel. 7: Monte Palmeto (Cinisi) 15.05.2019; rels 8-9: Gorgo Lungo (Godrano) 28.08.2020; rels 10-11: Gorgo Cerro (Monreale) 01.06.2018.

Table 3 - rels 1-2: Gorgo S. Rosalia (Palermo) 02.05.2010; rel. 3: Cozzo Grattarola (Palermo) 10.03.2019; rel. 4: Gorghi Tondi (Mazara del Vallo) 06.05.2019.

Table 4 - rels 1-2: Gorgo Lungo (Godrano) 16.05.2013; rels 3-4: Gorgo Lungo (Godrano) 01.06.2018.

Table 5 - rel. 1: c.da Cucco (Godrano) 11.06.2014; rel. 2: Bosco Granza (Sclafani B.) 25.05.2019; rel. 3: Gorgo Pollicino (Petralia Sop.) 01.07.2019; rel. 4: Monte Carcaci (Castronovo S.) 03.06.2019; rel. 5: Case Scalilli (Corleone) 05.06.2014; rel. 6: Gole del Drago (Corleone) 05.06.2014; rel. 7: Gole del Drago (Corleone) 05.06.2014; rel. 8: Valle Maria (Godrano) 12.05.2014; rel. 9: Case Renzi (Monreale) 14.05.2013; rel. 10: Paraturazzu (Mezzojuso) 12.05.2014; rel. 11: Pietra Giordano (Geraci S.) 01.07.2019; rel. 12: Bosco Granza (Sclafani B.) 25.05.2019; rels 13-14: Piano Guddemi (Godrano) 07.05.2013; rel. 15: laghetto “ru zù Rusulinu” (Godrano) 20.05.2013; rel. 16: c.da Bifarera alta (Monreale) 14.05.2013; rel. 17: c.da Bifarera alta (Monreale) 14.05.2013; rel. 18: c.da Bifarera alta (Monreale) 14.05.2013; rels 19-20: c.da Coda di Riccio (Godrano) 25.05.2013.

Table 6 - rel. 1: Case Javuti (Casteldaccia) 24.05.2019; rels 2 and 6: Laghetto “ru zù Rusulinu” (Godrano) 01.06.2018; rels 3-4: Gorgo Pizzo Selva a Mare (Trabia) 24.05.2019; rels 5 and 7: Cozzo Valdaro (Trabia) 24.05.2019.

Table 7 - rel. 1: Lago Soprano (Serradifalco) [pag. 17 in Marcenò & Raimondo (1977)]; rel. 2: c.da Alpe Cucco (Godrano) 11.06.2014; rel. 3: c.da Casale (Corleone) 05.06.2014; rel. 4: c.da Cicio (Corleone) 05.06.2014; rel. 5: Gorgo S. Andrea (Castronovo S.) 03.06.2019; rel. 6: Foce Fiume Carboj (Menfi) 25.07.2019; rel. 7: c.da Casale (Corleone) 05.06.2014; rel. 8: c.da Nicolosi (Corleone) 05.06.2014.

Table 8 - rels 1-2: Bosco Granza (Sclafani B.) 25.05.2019; rels 3-4: Monte Carcaci (Castronovo S.) 29.05.2013.

Table 9 - rel. 1: Gorgo Carcaci (Castronovo S.) 02.06.2018; rel. 2: Piano Garufi (Mazara del Vallo) 13.04.2019; rel. 3: Piano Guddemi (Godrano) 17.05.2013; rel. 4: Chiano Prani (Godrano) 20.05.2013; rel. 5: c.da Alpe Cucco (Godrano) 11.06.2014; rels 6-7: c.da Coda di Riccio (Godrano) 24.05.2012; rel. 8: c.da Coda di Riccio (Godrano) 25.05.2012; rels 9-10: Valle Maria (Godrano) 12.05.2014; rel. 11: c.da Casale Soprano (Monreale) 12.06.2013; rel. 12: c.da Casale (Monreale) 05.06.2014; rels 13-14: c.da Bifarera (Monreale) 14.05.2013; rel. 15: Portella di Piro (Godrano) 16.05.2013; rel. 16: Pizzo Nicolosi (Monreale) 14.05.2013; rel. 17: Case del Duca (Godrano) 12.06.2013; rel. 18: c.da Monticchio sottano (Godrano) 24.04.2014; rel. 19: c.da Largo di Bosco (Monreale) 27.04.2014; rels 20-21: c.da Bifarera alta (Monreale) 14.05.2013; rels 22-23: Gorgo Rebuttone (Altofonte) 04.07.2015; rel. 24: c.da Biviere (Godrano) 16.05.2013; rel. 25: Monte Palmeto (Carini) 13.04.2019.

Table 10 rel. 1: c.da Monticchio soprano (Godrano) 03.06.2013; rel. 2: c.da Cannitello (Godrano) 03.06.2013; rel. 3: c.da Casale (Monreale) 12.05.2014; rel. 4: Laghetto “ru zù rusulinu” (Godrano) 20.05.2013; rel. 5: Gorgo di Rebuttone (Altofonte) 04.07.2015; rels 6-7: Gorgo Pizzo Selva a Mare (Trabia) 24.05.2019; rels 8-9: Gorgo Glaviano (Godrano) 24.04.2014; rel. 10: c.da Sovarita alta (Marineo) 03.06.2013; rel. 11: Gorgo Cerro (Monreale) 09.05.2013; rel. 12: Valle Maria (Godrano) 20.05.2013; rels 13-14: Gorgo Lungo (Godrano) 16.05.2013.

Table 11 - rel. 1: Gorgo dei Palermitani (Monreale) 09.05.2013; rels 2-3: Monte Cofano (Custonaci) 05.05.2018; rels 4-5: Pantani di Anguillara (Calatafimi) 05.05.2018; rel. 6: Monte Carcaci (Castronovo S.) 02.06.2018; rels 7-8: Piano Guddemi (Godrano) 17.05.2013; rels 9-10: Gorgo Quattro Tummini (Godrano) 17.05.2013; rels 11-12: Gorgo Carcaci (Castronovo S.) 02.06.2018; rels 13-14: Marosa (Godrano) 17.05.2013.

Table 12 - rel. 1: Fosso Pietra Giordano (Geraci S.) 01.07.2019; rel. 2: Gurgo Pietra Giordano (Geraci S.) 01.07.2019; rel. 3: Sovarita (Marineo) 20.05.2013; rel. 4: Bosco Granza (Sclafani B.) 25.05.2019; rel. 5: c.da Coda di Riccio (Godrano) 25.05.2013; rels 6-7: Case Franco (Godrano) 20.05.2013; rel. 8: c.da Monticchio sottano (Godrano) 24.04.2014; rel. 9: c.da Zotta Frascino (Monreale) 07.05.2013; rel. 10: Pizzo Campana (Godrano) 10.05.2013; rels 11-12: Margiazzo Vallone Arcere (Monreale) 09.05.2013; rel. 13: Cozzo Bileo (Marineo) 06.06.2013; rel. 14: Portella di Granza (Sclafani B.) 25.05.2019; rel. 15: Lago Bomes (Sclafani B.) 25.05.2019; rels 16-17: Gorgo Lungo (Godrano) 16.05.2013.

Table 13 - rel. 1: Pizzo Angelo (Mezzojuso) 21.05.2014; rel. 2: c.da Valle Fono (Godrano) 10.05.2013; rel. 3: c.da Acqua Jenco (Mezzojuso) 21.05.2014; rel. 4: Sorgente Acqua Accetta (Marineo) 07.05.2013; rel. 5: Gorgo Cerro (Monreale) 09.05.2013.

Table 14 - rel. 1: Piano Carduna (Monreale) 09.05.2013; rel. 2: Piano Carduna (Monreale) 09.05.2013; rel. 3: c.da Acqua Jenco (Mezzojuso) 21.05.2014; rel. 4: c.da Sovarita alta (Marineo) 03.06.2013; rel. 5: Cozzo Bileo (Marineo) 06.06.2013; rel. 6: c.da Acqua Jenco (Mezzojuso) 21.05.2014; rel. 7: Sorgente Acqua Accetta (Marineo) 07.05.2013; rel. 8: Valle Fono (Godrano) 10.05.2013; rel. 9: c.da Sovarita alta (Godrano) 03.06.2013; rel. 10: Pizzo Angelo (Mezzojuso) 21.05.2014; rel. 11: c.da Acqua Jenco (Mezzojuso) 21.05.2014.