Research Article
Print
Research Article
Contribution to the knowledge of aquatic vegetation of montane and submontane areas of Northern Apennines (Italy)
expand article infoDaniele Viciani, Claudia Angiolini§, Gianmaria Bonari|, Alessandro Bottacci, Lorella Dell´Olmo, Vincenzo Gonnelli#, Antonio Zoccola¤, Lorenzo Lastrucci
‡ University of Florence, Florence, Italy
§ University of Siena, Siena, Italy
| Free University of Bozen-Bolzano, Bolzano, Italy
¶ Parco Nazionale delle Foreste Casentinesi, Monte Falterona e Campigna, Arezzo, Italy
# Istituto di Istruzione Superiore "Camaiti", Pieve S. Stefano (AR), Italy
¤ Reparto Carabinieri Biodiversità di Pratovecchio, Arezzo, Italy
Open Access

Abstract

The importance of wetlands for biodiversity conservation is widely recognized. Their relevance is crucial in the identification of habitat types included in the Habitats Directive 92/43/EEC and in the application of the following conservation measures. Yet, several montane and submontane areas are poorly investigated from the phytosociological point of view. Here we studied aquatic communities of the Tuscan-Romagna Apennines in Italy using 52 vegetation plots dominated by hydrophytes collected in wetlands of natural and artificial origin. We analysed our data using a cluster analysis and identified 12 vegetation types that we classified as three vegetation classes Charetea intermediae, Lemnetea and Potamogetonetea, and two habitat types of conservation importance, as the hard oligo-mesotrophic waters with benthic vegetation of Chara spp. (Natura 2000 code 3140) and the natural eutrophic lakes with Magnopotamion or Hydrocharition (Natura 2000 code 3150). Our study highlights the diversity of aquatic habitats in montane and submontane areas of the Northern Apennines where water bodies are generally small and scattered. This study further highlights the important role of natural freshwater ecosystems for vegetation, but also the notable role of partly or entirely artificial water bodies in maintaining aquatic communities.

Keywords

conservation, freshwater ecosystem, habitat, hydrophyte, phytosociology, syntaxonomy, vegetation

Introduction

Aquatic habitats are highly relevant for plant diversity conservation, especially considering the worldwide degradation of natural aquatic ecosystems and their species richness decline (Hrivnák et al. 2014). Wetlands are crucial for the conservation of biodiversity, as they provide suitable habitats for numerous threatened plant and animal species (Zhang et al. 2012). Despite that, due to man-driven pressures and threats, they are among the most threatened habitats in the world (Dudgeon et al. 2006). In Europe, including Italy, freshwater ecosystems include a high proportion of threatened habitats in an unfavourable conservation status due to fragmentation, surface reduction, floristic impoverishment, and alien species invasion (Janssen et al. 2016; Zivkovic et al. 2017; Gigante et al. 2018; Gennai et al. 2020; Lazzaro et al. 2020; EEA 2020; Viciani et al. 2020). Moreover, several wetland plant communities of conservation importance are not included in the Habitats Directive, nor in other protection lists, despite being extremely rare in the Mediterranean Basin (Gigante et al. 2013; Benavént-Gonzales et al. 2014; Lastrucci et al. 2014, 2017; Angiolini et al. 2017). In Italy, there is a contrasting pattern of frequency of wetlands between Alps and Apennines. While the Alps are relatively rich in wetlands, the Apennines are rather poor in freshwater ecosystems. The latter ones are also often fragmented and floristically impoverished, due the progressive loss of hygrophilous boreal species along the north-south gradient (Angiolini et al. 2019). Moreover, especially at relatively low elevations, many Apennine wetlands result in being widely associated with anthropogenic activities, being partially or totally of artificial origin (Gerdol and Tomaselli 1993).

In this context, phytosociological investigations of freshwater plant communities are essential for determining habitat types, typical species, and, finally, prioritisation of conservation (Biondi et al. 2012; European Commission 2013; Viciani et al. 2014, 2016; Gigante et al. 2016, 2018; Bonari et al. 2021). In the northern and central Apennines the literature available focused mostly on montane wetlands (Gerdol and Tomaselli 1993; Tardella and Di Agostino 2020, and references therein), and on montane fluvial systems (Arrigoni and Papini 2003; Foggi et al. 2011). On the contrary, only a few, local studies have been carried out on the wetland communities of the eastern part of the mountains between Tuscany and Romagna (Lastrucci et al. 2005, 2006), some of which did not use the phytosociological approach (e.g. Raffaelli 1971), or without published relevés (e.g., Buldrini et al. 2017). With the aim of filling the mentioned gap of knowledge, we investigated aquatic vegetation of small submontane and montane wetlands of natural and artificial origin in Tuscan-Romagna Apennines.

Materials and methods

Study area

The study area lies in the north-eastern Apennines between Tuscany and Emilia-Romagna regions (Central Italy, Fig. 1). The area encompasses 45 wetlands sites, ranging from 535 m a.s.l. to 1,470 m a.s.l., mainly located in Tuscany in the Foreste Casentinesi National Park and some other Special Areas of Conservation of the Natura 2000 network. These wetlands of natural and artificial origin are of different sizes and include lakes, small ponds, and pools. They are mostly located in forest areas. Depending on elevation, the climate is generally submontane/montane, with moderate temperatures and moderate to heavy rainfall. At higher elevations, a temperate oceanic bioclimate is found, while there is a temperate oceanic-sub-Mediterranean bioclimate at lower elevations (Pesaresi et al. 2017). As to geological substrates, there are four main geological formations in the area: three on the Tyrrhenian-facing slopes, with two types of siliceous sandstones (“Macigno of Mugello” and “Macigno of Chianti”), encompassing different percentages of limestone and silty schists, and some solid limestone outcrops (“Alberese”), and one on the Adriatic-facing slopes (“Marnoso-Arenacea”), with widespread sandstone-marly flysch formations. Other less extensive geological formations are also present, such as the peculiar ultramafic outcrops of High Tiber Valley (Carmignani et al. 2013).

Figure 1. 

Study area and its position in respect to Italy (inset in the upper right corner). White circles are the sampled sites (N = 23).

Data set and data analysis

Our dataset is composed of all the published (N = 6) and unpublished (N = 46) relevés dominated by hydrophytes from the area. It includes 23 sampling localities. The published data include small wetlands in the high Marecchia Valley (Lastrucci et al. 2005; N = 4) and on ultramafic soils in the upper Tiber Valley (Lastrucci et al. 2006; N = 2). The new data were collected between 2005-2019 following the phytosociological method (Braun Blanquet 1932). Further site information is available in Appendix.

We analysed a matrix of 52 relevés × 38 species using a cluster analysis in R environment (R Core Team 2020). We used the chord distance of the function vegdist of vegan package (Oksanen et al. 2020) and median linkage of the function hclust of R.

Plant species names mainly follow the Portal to the Flora of Italy (2021), while the syntaxonomic nomenclature of classes, orders and alliances, including the names derived from the genus Potamogeton, follows Mucina et al. (2016). Association names follow Chytrý (2011). The names of the syntaxa agree with the 4th edition of the ICPN (Theurillat et al. 2021).

Results and discussion

The dendrogram resulting from the cluster analysis (Fig. 2) allowed us to identify 12 different communities. From a syntaxonomic view point they can be classified as three different classes corresponding to Charetea intermediae, Lemnetea and Potamogetonetea. We elaborate in more detail these communities below.

Figure 2. 

Cluster dendrogram of our data encompassing 52 relevés of aquatic vegetation of montane and submontane areas of Northern Apennines (Italy).

Aquatic vegetation communities

Charetum vulgaris Corillion 1957 (Table 1, rels 1–3; Cha_vul, rels 31–33 in Fig. 2)

The communities dominated by Chara vulgaris occur in stagnating and slow running, eutrophic, shallow and medium deep waters (Hrivnák 2002; Hrivnák et al. 2005) and can be classified to the association Charetum vulgaris. Due to the broad ecological amplitude of the dominant species, the association can be found in very different habitat types (Šumberová et al. 2011), including disturbed and polluted ones, sometimes even subject to desiccation. In the study area, we found mainly the typically species-poor expressions of this association, developing in clear and relatively shallow water bodies. However, we also report a variant co-dominated by Zannichellia palustris (rel. 2 in Table 1) where advanced drying up conditions are present. Here, the presence of small helophytes and other hygrophilous species underlines a transition towards other vegetation types.

Table 1

. Charetea intermediae F. Fukarek 1961.

Rel. n. 1 2 3
Site reference A C C
Relevé area (m2) 10 4 2
Total cover (%) 100 100 90
Number of species 1 2 9
Number in the dendrogram 33 32 31
Charetum vulgaris
Chara vulgaris L. 5 5 3
Other species
Ranunculus trichophyllus Chaix . 1 .
Zannichellia palustris L. . . 3
Veronica beccabunga L. . . 2
Alisma plantago-aquatica L. . . 1
Equisetum palustre L. . . 1
Ranunculus repens L. . . 1
Juncus inflexus L. . . +
Mentha aquatica L. subsp. aquatica . . +
Table 2

. Lemnetea O. de Bolòs et Masclans 1955.

Rel. n. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Site reference Pr G G G G G T T MC G Pi Pi LI LI LPe
Relevé area (m2) 1 5 4 4 2 2 4 4 4 4 1 1 4 4 10
Total cover (%) 20 100 95 100 100 100 95 80 100 100 100 100 100 90 90
Number of species 6 5 5 2 2 3 2 3 2 1 2 2 1 1 1
Number in the dendrogram 5 6 7 8 9 10 11 12 13 14 3 4 51 52 50
Lemnetum minoris
Lemna minor L. 2 5 5 4 4 5 5 4 5 5 3 3 . . .
Lemnetum trisulcae
Lemna trisulca L. . . . . . . . . . . 4 4 . . .
Utricularietum australis
Utricularia australis R. Br. . . . . . + . . . . . . 5 5 .
Ceratophylletum demersi
Ceratophyllum demersum L. . . . . . . . . . . . . . . 5
Other species
Potamogeton natans L. . . . 3 3 2 1 1 . . . . . . .
Ranunculus trichophyllus Chaix . . . . . . . 2 1 . . . . . .
Galium palustre L. subsp. palustre . 2 + . . . . . . . . . . . .
Phragmites australis (Cav.) Trin. ex Steud. . 2 2 . . . . . . . . . . . .
Equisetum arvense L. + + . . . . . . . . . . . . .
Juncus articulatus L. +
Equisetum palustre L. . . 1 . . . . . . . . . . . .
Nasturtium officinale R.Br. subsp. officinale . 1 . . . . . . . . . . . . .
Ranunculus repens L. + . . . . . . . . . . . . . .
Veronica beccabunga L. +
Carex remota L. . . + . . . . . . . . . . . .

Lemnetum minoris Soó 1927 (Table 2, rels 1–10; Lem_min, rels 5–14 in Fig. 2)

Lemna minor-dominated communities can be classified to the association Lemnetum minoris. These communities are rather common in Europe, including Italy, developing in several habitat types, due the broad ecological range of L. minor. This community often forms mono- or paucispecific stands (Sburlino et al. 2004; Šumberová 2011a; Caldarella et al. 2021). Several authors (e.g. Rivas-Martínez et al. 2001; Makra 2005; Hrivnák and Csiky 2009; Šumberová 2011a) classify this vegetation type to the association Lemnetum minoris Soó 1927 (syn. Lemnetum minoris Oberd. ex Th. Müller et Görs 1960), reporting it from different types of eutrophic water bodies except very large ones, where the species might be disturbed by the actions of the waves (Šumberová 2011a; Zervas et al. 2020). Nevertheless, given the wide sociological and ecological value of the dominant species, other authors consider the communities of L. minor only as a basal phytocoenon (Scoppola 1982; Pott 1992; Sburlino et al. 2004). L. minor tends to form rather poor communities, often mixing up with the communities of the class Potamogetonetea. Some of our relevés (rels. 4–6) can be seen as transitional aspects towards the association Potamogetonetum natantis. This is in agreement with previous Tuscan vegetation studies (Lastrucci et al. 2010, 2012).

Lemnetum trisulcae den Hartog 1963 (Table 2, rels 11–12; Lem_tri, rels 3–4 in Fig. 2)

The association Lemnetum trisulcae was found in a small pond (Lastrucci et al. 2005, sub Lemnetum trisulcae Knapp et Stöffer 1962). The association Lemnetum trisulcae is typical of mesotrophic to eutrophic still water bodies, especially in alluvial pools with clear water (Šumberová 2011a).

In the study area, in agreement with literature, the community develops under the water surface covered by a floating layer of Lemna minor (Buchwald 1994; Šumberová 2011a). This association is particularly important from the conservation viewpoint as Lemna trisulca is a rare species in the study area. The sampled locality represents the only site known in the Arezzo province (Viciani et al. 2021).

Utricularietum australis Müller et Görs 1960 (Table 2, rels 13–14; Utr_aus, rels 51–52 in Fig. 2)

The association Utricularietum australis is typical of mesotrophic to naturally eutrophic water bodies such as small fishponds, alluvial pools and oxbows. The community can be found also on newly established wetlands (Šumberová 2011a). This is confirmed also in the study area, where the association Utricularietum australis was found in a rather recently restored wetland. At the site, the species Utricularia australis has progressively become more abundant over the last ten years. We sampled rather dense stands during our survey. Interestingly, the species was recorded also in a nearby wetland (Peruzzi et al. 2017), where, however, the species does not form an autonomous community as it competes with a layer of other hydrophytes, especially Lemna minor and Potamogeton natans.

Ceratophylletum demersi Corillion 1957 (Table 2, rel. 15; Cer_dem, rel. 50 in Fig. 2)

The association Ceratophylletum demersi was reported in a small lake on ultramafic substrates (Lastrucci et al. 2006), where it occupies the central and deeper areas of the lake, forming dense mats along the entire water column, due the ability of the dominant species to grow under poor light condition (Zervas et al. 2020). In the study area, the stands of the association Ceratophylletum demersi are situated in contact with the communities of Nymphaea alba which, on the contrary, occupy areas with shallow waters. The presence of Ceratophyllum demersum at this site, however, has reduced over the time, probably due to the abandonment of human management or the presence of alien animal species observed during our field surveys (e.g., the red swamp crayfish).

Nymphaeetum albae Vollmar 1947 (Table 3, rel. 1; Nym_alb, rel. 49 in Fig. 2)

According to several authors (Šumberová 2011b; Zervas et al. 2020), Nymphaea alba dominated stands can be classified to the association Nymphaeetum albae Vollmar 1947, typical of mesotrophic to eutrophic oxbows and alluvial pools. During vegetation succession, it replaces submerged vegetation and contributes to the terrestrialisation of shallow water bodies (Šumberová 2011b). This association was reported (sub Myriophyllo verticillati-Nupharetum lutei Koch 1928) in a small lake on ultramafic substrates (Lastrucci et al. 2006). This community has dramatically reduced over time.

Potamogetonetum natantis Hild 1959 (Table 3, rels 2–10; Pot_nat, rels 15–23 in Fig. 2)

Our relevés can be classified to the association Potamogetonetum natantis, typical of mostly mesotrophic, but also oligotrophic or eutrophic water bodies with 20–100 cm deep, still or slowly moving waters (Šumberová 2011b). Potamogeton natans seems to be the more widespread rhizophyte with emergent leaves in the study area. It tends to form pauci- or monospecific stands, often occupying the entire surface of small pools or ponds. P. natans dominated communities seem to be rather common also in other wetlands of central Apennines (Buchwald 1994).

Potamogetonetum denso-nodosi O. Bolòs 1957 (Table 3, rels 11–14; Pot_den, rels 27–30 in Fig. 2)

Potamogeton nodosus is able to form stands in stagnant or slow running waters and in markedly fast-moving conditions (Ceschin and Salerno 2008; Landucci et al. 2011; Mereu et al. 2012; Lastrucci et al. 2012, 2014). Comparing with P. natans communities, this species forms stands in deeper and larger water bodies in the study area, producing both submerged and floating communities. We classified our data to the association Potamogetonetum denso-nodosi, reported for several habitat types such as eutrophic low-running waters of rivers, channels, reservoir, pits and ponds with fine-textured or also gravelly beds covered by organic matter (Ninot et al. 2000; Info Flora 2021).

Potamogetono pectinati-Myriophylletum spicati Rivas Goday 1964 (Table 3, rels 15–17; Pot_Myr, rels 24–26 in Fig. 2)

In the study area, the association Potamogetono pectinati-Myriophylletum spicati was found at only one site. The association is in contact with the association Potamogetonetum natantis Hild 1959, which occurs in deeper water. This association (syn. Myriophylletum spicati Soó 1927 nom. nud.) can develop in different wetland types tolerating turbidity, drying and human disturbance (Šumberová 2011b; Zervas et al. 2020).

Parvo-Potamogetono-Zannichellietum pedicellatae Soó 1947 (Table 3, rels 18–19; Par_Zan, rels 47–48 in Fig. 2)

The association Parvo-Potamogetono-Zannichellietum pedicellatae (syn. Zannichellietum palustris Lang 1967) includes monodominant stands of Zannichellia palustris or mixed stands of this species with narrow-leaved Potamogeton s.l. species such as Stuckenia pectinata or Potamogeton pusillus (Šumberová 2011b). We found this association in different habitat types, often in very shallow, eutrophic to hypertrophic and turbid waters, related to the nitrophilous character of Z. palustris (Ceschin and Salerno 2008). In the study area, Z. palustris stands are present only in small pools, developing in very shallow waters of a few centimeters in contact with Ranunculus trichophyllus vegetation or with the helophytes of the surrounding belts. According to several authors (e.g., Biondi and Blasi 2015; Mucina et al. 2016) vegetation with Zannichellia sp. pl. should be classified to syntaxa typical of mainly coastal meso-eutrophic brackish waters of the alliance Zannichellion pedicillatae. However, the alliance Zannichellion pedicellatae communities can reach inland areas as a result of pollution and eutrophication which, in our case, could be caused by the presence of livestock (Biondi and Blasi 2015; Preislerová et al. 2022).

Potamogetono crispi-Ranunculetum trichophylli Imchenetzky 1926 (Table 3, rels 20–32; Pot_Ran, rels 34–46 in Fig. 2)

Ranunculus trichophyllus is one of the more common hydrophytes in the study area and can be found in several habitat types, such as in flowing and in standing waters (Lastrucci et al. 2014 and references therein). However, the species seems to prefer small shallow ponds visited by livestock and are subject to strong summer drying. The species often forms rather dense, species-poor stands, belonging to the association Potamogetono crispi-Ranunculetum trichophylli (syn. Ranunculetum trichophylli Soó 1927), typical of oligo-mesotrophic to eutrophic waters and tolerates high levels of turbidity (Šumberová 2011b). The association tolerates strong water level variations and can live for a short time even in complete emersion.

Callitriche stagnalis community (Table 3, rels 33–34; Cal_sta, rels 1–2 in Fig. 2)

Callitriche stagnalis community occurs in small pools, subject to almost total drying in the summer season and disturbed by the trampling of wild and farmed animals, especially horses. The community is represented by species-poor stands in which Callitriche stagnalis has high cover values. The ecological features of this community suggest classifying it to the Ranunculion aquatilis alliance.

Table 3.

Potamogetonetea Klika in Klika et Novák 1941.

Rel. n. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Site reference LPe Cam Pi Pi PS T T Me Mv T LV Cast Cast Cast Me Me Me Poz Poz Be Cam ErN To T LPi Be PS St Prt Prt Mv PS PStr PStr
Relevé area (m2) 10 4 2 1 4 1.5 1.5 16 16 3 4 10 10 6 9 4 4 4 4 6 4 1 1 4 1 4 4 16 4 4 2 4 4 2
Total cover (%) 100 50 80 50 100 95 90 80 80 95 70 80 80 80 100 100 100 100 100 100 100 60 70 100 95 80 100 85 100 90 80 100 100 100
Number of species 3 5 4 4 4 6 2 3 2 1 5 4 5 5 2 3 1 5 3 5 2 2 4 4 3 3 2 2 2 2 1 1 3 2
Number in the dendrogram 49 15 16 17 18 19 20 21 22 23 27 28 29 30 24 25 26 47 48 34 35 36 37 38 39 40 44 43 41 42 45 46 1 2
Nymphaeetum albae
Nymphaea alba L. 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Potamogetonetum natantis
Potamogeton natans L. 5 4 3 5 5 5 5 5 5 . . . . 3 + . . . . . . . 1 . . . . . . . . . .
Potamogetonetum denso-nodosi
Potamogeton nodosus Poir. . . . . . . . . . . 4 4 4 4 . . . . . . . . . . . . . . . . . . . .
Potamogetono pectinati-Myriophylletum spicati
Myriophyllum spicatum L. . . . . . . . + . . . . . + 4 5 5 . . . . . . . . . . . . . . . . .
Parvo-Potamogetono-Zannichellietum pedicellatae
Zannichellia palustris L. . . . . . . . . . . . . . . . . . 4 5 . . . . . . . . . . . . . . .
Potamogetono crispi-Ranunculetum trichophylli
Ranunculus trichophyllus Chaix . 1 1 1 1 + 1 . . . . 2 . 1 . . . 3 . 5 4 3 4 5 5 5 5 5 5 5 5 5 . .
Callitriche stagnalis community
Callitriche stagnalis Scop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5
Other species of Potamogetonetea and subordinated syntaxa
Najas major All. . . . . . . . . . . . . 2 2 . . . . . . . . . . . . . . . . . . . .
Callitriche palustris L. . . 2 + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Potamogeton crispus L. . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . .
Other species
Mentha aquatica L. subsp. aquatica . . . . . + . . . . . + + . . + . . . . . . + . . 1 . . + + . . . .
Juncus articulatus L. . 1 . . . . . . . . 1 . . . . . . + . + . . + . 1 . . . . . . . . .
Lemna minor L. . + . . 1 . . . + . . . . . . . . + + . . . . + . . . . . . . . . .
Alisma plantago-aquatica L. . . . . . r . . . . + . . . . . . . . 1 . . . . + . . . . . . . . .
Eleocharis palustris (L.) Roem. et Schult. subsp. palustris . . . . . . . . . . 1 . . . . . . . . + . . 2 . . + . . . . . . . .
Chara vulgaris L. . 2 . . . . . . . . . . . . . . . . . 2 3 . . . . . . . . . . . . .
Glyceria notata Chevall. . . . . . . . . . . . . . . . . . 2 . . . . . . . . + . . . . . + .
Galium palustre L. subsp. palustre . . + + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phragmites australis (Cav.) Trin. ex Steud. + . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . .
Alisma lanceolatum With. . . . . 1 . . . . . . . . . . . . . . . . . . . . . . + . . . . . .
Peplis portula L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . + +
Sparganium erectum L. s.l. . . . . . + . . . . . . . . . . . . . . . . . 1 . . . . . . . . . .
Equisetum palustre L. . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . . .
Veronica beccabunga L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +
Agrostis stolonifera L. . . . . . + . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cardamine amara L. . . . . . . . . . . . . . . . . . . . . . 2 . . . . . . . . . . . .
Chara sp. . . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . .
Juncus effusus L. . . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . .
Lycopus europaeus L. . . . . . . . . . . . + . . . . . . . . . . . . . . . . . . . . . .
Ceratophyllum demersum L. 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Nasturtium officinale R.Br. subsp. officinale . . . . . . . . . . . . . . . . . . + . . . . . . . . . . . . . . .

Conclusion and nature conservation implications

Several vegetation types identified in the study area can be referred to as habitats of conservation interest (Biondi et al. 2009, 2012). Though generally small and partially of artificial origin, the investigated wetlands are crucial to increase species and habitat diversity (Landi et al. 2009; Viciani et al. 2010, 2018) and to support a habitat network able to preserve the hygrophilous species assemblages of the mountain wetland systems of woody environments (Flinn et al. 2008; Angiolini et al. 2019).

The assignment of vegetation types to habitat types included in the Habitats Directive 92/43/EEC is not always straightforward. For example, species of the genus Chara can be found in different vegetation types. However, this does not assure the presence of the habitat Natura 2000 code 3140 “Hard oligo-mesotrophic waters with benthic vegetation of Chara spp.” (Guarino et al. 2019). In our study, the investigated communities are ecologically and physiognomically referable to the class Charetea intermediae. Though extremely species-poor and fragmented, the Chara vulgaris communities present in a few clear pools can thus be referred to the habitat code 3140.

Almost all vegetation types belonging to the Lemnetea and Potamogetonetea classes we report here can be assigned to the habitat Natura 2000 code 3150 “Natural eutrophic lakes with Magnopotamion or Hydrocharition” (Fig. 3). Though the investigated water bodies are generally small, the assignment of the vegetation types to this habitat is clear, for their ecological and floristical features. Accordingly, many of the dominant species of the investigated communities are listed among the diagnostic species of the habitat code 3150 (Biondi et al. 2009).

Figure 3. 

Lemnetum minoris Soó 1927 community with Lemna minor L. and Potamogeton natans L. (A) and Utricularietum australis Müller et Görs 1960 community with Utricularia australis R. Br. (B). Both communities can be referred to the habitat 3150 “Natural euthrophic lakes with Magnopotamion or Hydrocharition-type vegetation” in the study area. Photo credit: (A) G. Bonari, 2016; (B) R. Sauli, 2019.

The interpretation of the communities with Ranunculus trichophyllus and Callitriche stagnalis for conservation purpose is critical. These species are listed among the diagnostic species of the habitat Natura 2000 code 3260 “Water courses of plain to montane levels with the Ranunculion fluitantis and Callitricho-Batrachion vegetation” (Biondi et al. 2009), but in ecological conditions of almost stagnant water, with a very reduced flow, it is rather common to find an admixture of species of the alliances Ranunculion aquatilis and Potamogetonion. Nevertheless, the classification of our communities to the habitat code 3260 appears inappropriate, because this habitat is rather related to running water with seasonal water fluctuations. As a matter of fact, to discriminate between habitats 3150 and 3260, the prevalence of the ecological criterion over the floristical one is generally preferred (Rivieccio et al. 2021).

Our study highlights the diversity of montane and submontane aquatic habitats of Northern Apennines. Interestingly, this diversity is hosted in natural and non-natural wetlands thus suggesting that conservation of azonal aquatic vegetation, when carefully planned and at favourable environmental conditions, can be, to some extent, pursued also by means of (semi-)artificial wetlands.

Syntaxonomic scheme

Charetea intermediae F. Fukarek 1961

Charetalia intermediae Sauer 1937

Charion vulgaris (W. Krause et Lang 1977) W. Krause 1981

Charetum vulgaris Corillion 1957

Lemnetea O. de Bolòs et Masclans 1955

Lemnetalia minoris O. de Bolòs et Masclans 1955

Lemnion minoris O. de Bolòs et Masclans 1955

Lemnetum minoris Soó 1927

Lemnetum trisulcae den Hartog 1963

Utricularion vulgaris Passarge 1964

Utricularietum australis Müller et Görs 1960

Stratiotion Den Hartog et Segal 1964

Ceratophylletum demersi Corillion 1957

Potamogetonetea Klika in Klika et Novák 1941

Potamogetonetalia Koch 1926

Nymphaeion albae Oberd. 1957

Nymphaeetum albae Vollmar 1947

Potamogetonetum natantis Hild 1959

Potamogetonion Libbert 1931

Potamogetonetum denso-nodosi O. de Bolòs 1957

Potamogetono pectinati-Myriophylletum spicati Rivas Goday 1964

Zannichellion pedicellatae Schaminée, Lanjouw et Schipper ex Passarge 1996

Parvo-Potamogetono-Zannichellietum pedicellatae Soó 1947

Ranunculion aquatilis Passarge ex Theurillat in Theurillat et al. 2015

Potamogetono crispi-Ranunculetum trichophylli Imchenetzky 1926

Callitriche stagnalis community

Acknowledgements

We thank Kateřina Šumberová for her comments on a previous version of this manuscript and Flavia Landucci for the help with the syntaxonomic nomenclature. We are grateful to the staff of the National Park of Foreste Casentinesi, Mount Falterona, Campigna and to the office Carabinieri Biodiversità Pratovecchio for supporting the investigations in their territories and for the photo. We thank Rosaria D'Oria and Giorgio Kioussis who helped in data collection, and Mc Conaghy Charlotte for the English proofreading.

Funding statement

This work was supported by the Open Access Publishing Fund of the Free University of Bozen-Bolzano.

Bibliography

  • Angiolini C, Viciani D, Bonari G, Lastrucci L (2017) Habitat conservation prioritization: A floristic approach applied to a Mediterranean wetland network. Plant Biosystems 151(4): 598–612. https://doi.org/10.1080/11263504.2016.1187678
  • Angiolini C, Viciani D, Bonari G, Zoccola A, Bottacci A, Ciampelli P et al. (2019) Environmental drivers of plant assemblages: are there differences between palustrine and lacustrine wetlands? A case study from the northern Apennines (Italy). Knowledge and Management of Aquatic Ecosystems 420: 34. https://doi.org/10.1051/kmae/2019026
  • Arrigoni PV, Papini P (2003) La vegetazione del sistema fluviale Lima-Serchio (Toscana settentrionale. Parlatorea 6: 95–129.
  • Benavent-González A, Lumbreras A, Molina JA (2014) Plant communities as a tool for setting priorities in biodiversity conservation: A novel approach to Iberian aquatic vegetation. Biodiversity and Conservation 23: 2135–2154. https://doi.org/10.1007/s10531-014-0709-3
  • Biondi E, Blasi C, Burrascano S, Casavecchia S, Copiz R, Del Vico E et al. (2009) Manuale Italiano di interpretazione degli habitat della Direttiva 92/43/CEE. Società Botanica Italiana. Ministero dell’Ambiente e della Tutela del Territorio e del Mare, D.P.N. http://vnr.unipg.it/habitat
  • Biondi E, Burrascano S, Casavecchia S, Copiz R, Del Vico E, Galdenzi D et al. (2012) Diagnosis and syntaxonomic interpretation of Annex I Habitats (Dir. 92/43/EEC) in Italy at the alliance level. Plant Sociology 49(1): 5–37. http://doi.org/10.7338/pls2012491/01
  • Bonari G, Fantinato E, Lazzaro L, Sperandii MG, Acosta ATR, Allegrezza M et al. (2021) Shedding light on typical species: implications for habitat monitoring. Plant Sociology 58: 157–166. https://doi.org/10.3897/pls2020581/08
  • Braun-Blanquet J (1932) Plant sociology: The study of plant communities. New York, NY: McGraw-Hill.
  • Buchwald R (1994) Vegetazione e odonatofauna negli ambienti acquatici dell’Italia Centrale. Braun-Blanquetia 11: 1–77.
  • Buldrini F, Pitoia F, Scabellone A, Cavalletti D, Chiarucci A, Pezzi G (2017) Le aree umide del Parco Nazionale delle Foreste Casentinesi: alcune considerazioni su flora e habitat. Quaderno di studi e notizie di storia naturale della Romagna 45: 1–20.
  • Caldarella O, Lastrucci L, Bolpagni R, Gianguzzi L (2021) Contribution to the knowledge of Mediterranean wetland vegetation: Lemnetea and Potamogetonetea classes in Western Sicily. Plant Sociology 58(1): 107–131. https://doi.org/10.3897/pls2020581/06
  • Ceschin S, Salerno G (2008) La vegetazione del basso corso del Fiume Tevere e dei suoi affluenti (Lazio, Italia). Fitosociologia 45(1): 39–74.
  • Chytrý M (Ed.) (2011) Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic 3. Aquatic and wetland vegetation]. Academia Praha.
  • Dudgeon D, Arthington AH, Gessner MO, Kawabata Z, Knowler DJ, Lévêque C et al. (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81: 163–182. https://doi.org/10.1017/S1464793105006950
  • EEA (2020) State of nature in the EU. Results from reporting under the nature directives 2013–2018: 142 pp. Imprimerie Centrale. Luxembourg. ISBN 978-92-9480-260-6
  • European Commission (2013) Interpretation Manual of European Union Habitats - Version EUR 28, April 2013. European Commission DG-ENV, Brussels: 146 pp.
  • Flinn KM, Lechowicz MJ, Waterway MJ (2008) Plant species diversity and composition of wetlands within an upland forest. American Journal of Botany 95(10): 1216–1224. https://doi.org/10.3732/ajb.0800098
  • Gennai M, Gabellini A, Viciani D, Venanzoni R, Dell’Olmo L, Giunti M et al. (2021) The floodplain woods of Tuscany: towards a phytosociological synthesis. Plant Sociology 58(1): 1–28. https://doi.org/10.1080/17445647.2020.1717654
  • Gigante D, Acosta ATR, Agrillo E, Armiraglio S, Assini S, Attorre F et al. (2018) Habitat conservation in Italy: the state of the art in the light of the first European Red List of Terrestrial and Freshwater Habitats. Rendiconti Lincei. Scienze Fisiche e Naturali 29(2): 251–265. https://doi.org/10.1007/s12210-018-0688-5
  • Gigante D, Foggi B, Venanzoni R, Viciani D, Buffa G (2016) Habitats on the grid: the spatial dimension does matter for redlisting. Journal for Nature Conservation 32: 1–9. https://doi.org/10.1016/j.jnc.2016.03.007
  • Gigante D, Landucci F, Venanzoni R (2013) The reed die-back syndrome and its implications for floristic and vegetational traits of Phragmitetum australis. Plant Sociology 50: 3–16. https://doi.org/10.7338/pls2013501/01
  • Hrivnák R (2002) Aquatic plant communities in the catchment area of the Ipeľ river in Slovakia and Hungary. Part I. Classes Lemnetea and Charetea fragilis. Thaiszia Journal of Botany 12: 25–50.
  • Hrivnák R, Csiky J (2009) Aquatic and marsh plant communities of the Cerová vrchovina Mts. (Slovakia), the Karancs and Medves Regions (Hungary). Thaiszia Journal of Botany 19: 71–89.
  • Hrivnák R, Kochjarová J, Oťaheľová H, Paľove-Balang P, Slezák M, Slezák P (2014) Environmental drivers of macrophyte species richness in artificial and natural aquatic water bodies–comparative approach from two central European regions. Annales de Limnologie-International Journal of Limnology 50(4): 269–278. https://doi.org/10.1051/limn/2014020
  • Hrivnák R, Oťaheľová H, Kochjarová J, Blanár D, Husák Š (2005) Plant communities of the class Charetea fragilis Fukarek ex Krausch 1964 in Slovakia: new information on their distribution and ecology. Thaiszia Journal of Botany 15: 117–128.
  • Janssen JAM, Rodwell JS, Criado MG, Gubbay S, Haynes T, Nieto A et al. (2016) European Red List of Habitats. Publications Office of European Union, Luxembourg. ISBN 978-92-79-61588-7. https://doi.org/10.2779/091372
  • Landi M, Frignani F, Bonini I, Casini F, Saveri C, De Dominicis V, Angiolini C (2009) Flora and vegetation in the catchment area of the stream “La Bolza” in the Merse valley (Siena, southern Tuscany). Webbia 64(2): 187–212. http://dx.doi.org/10.1080/00837792.2009.10670859
  • Landucci F, Gigante D, Venanzoni R (2011) An application of the Cocktail method for the classification of the hydrophytic vegetation at Lake Trasimeno (Central Italy). Fitosociologia 48(2): 3–22.
  • Lastrucci L, Bonari G, Angiolini C, Casini F, Giallonardo T, Gigante D et al. (2014) Vegetation of Lakes Chiusi and Montepulciano (Siena, central Italy): updated knowledge and new discoveries. Plant Sociology 51(2): 29–55. https://doi.org/10.7338/pls2014512/03
  • Lastrucci L, Dell'Olmo L, Foggi B, Massi L, Nuccio C, Vicenti C, Viciani D (2017) Contribution to the knowledge of the vegetation of the Lake Massaciuccoli (northern Tuscany, Italy). Plant Sociology 54(1): 67–87. https://doi.org/10.7338/pls2017541/03
  • Lastrucci L, Foggi B, Gonnelli V, Gusmeroli E (2006) La vegetazione delle aree umide dei substrati ultramafici dell’Alta Valtiberina (Arezzo, Italia centrale). Studia Botanica 24(2005): 9–44.
  • Lastrucci L, Gonnelli V, Foggi B (2005) Flora e vegetazione di alcune aree umide dell’altopiano della “Pianca” nell’alta Val Marecchia (Provincia di Arezzo, Toscana). Informatore Botanico Italiano 36(2) (2004): 429–442.
  • Lastrucci L, Landucci F, Gonnelli V, Barocco R, Foggi B, Venanzoni R (2012) The vegetation of the upper and middle River Tiber (Central Italy). Plant Sociology 49(2): 29–48. http://dx.doi.org/10.7338/pls2012492/02
  • Lastrucci L, Paci F, Raffaelli M (2010) The wetland vegetation of the Natural Reserves and neighbouring stretches of the Arno river in the Arezzo province (Tuscany, Central Italy). Fitosociologia 47(1): 29–59.
  • Lazzaro L, Bolpagni R, Buffa G, Gentili R, Lonati M, Stinca A et al. (2020) Impact of invasive alien plants on native plant communities and Natura 2000 Habitats: state of the art, gap analysis and perspectives in Italy. Journal of Environmental Management 274: 111140. https://doi.org/10.1016/j.jenvman.2020.111140
  • Makra O (2005) Checklist of the associations of the Hungarian section of Tisza basin. Tiscia 35: 9–16.
  • Mereu L, Lastrucci L, Viciani D (2012) Contributo alla conoscenza della vegetazione del fiume Pesa (Toscana, Italia Centrale). Studia Botanica 29: 105–143.
  • Mucina L, Bültmann H, Dierßen K, Theurillat J-P, Raus T, Čarni A et al. (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science 19(suppl. 1): 3–264. https://doi.org/10.1111/avsc.12257
  • Ninot JM, Carreras J, Carrillo E, Vigo J (2000) Syntaxonomic conspectus of the Vegetation of Catalonia and Andorra. I: hygrophilous herbaceous communities. Acta Botanica Barcinonensis 46: 191–237.
  • Peruzzi L, Viciani D, Agostini N, Angiolini C, Ardenghi NMG, Astuti G et al. (2017) Contributi per una flora vascolare di Toscana. VIII (440-506). Atti della Società Toscana di Scienze Naturali, Serie B, 123(2016): 71–82. http://dx.doi.org/10.2424/ASTSN.M.2016.06
  • Pott R (1992) Die Pflanzengesellschaften Deutschlands. E. Ulmer, Stuttgart.
  • Preislerová Z, Jiménez-Alfaro B, Mucina L. Berg C, Bonari G, Kuzemko A et al. (2022) Distribution maps of vegetation alliances in Europe. Applied Vegetation Science 25(1): e12642. http://dx.doi.org/10.1111/avsc.12642
  • R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  • Rivas-Martínez S, Fernández-Gonzales F, Loidi J, Lousã M, Penas A (2001) Syntaxonomical Checklist of vascular plant communities of Spain and Portugal to association level. Itinera Geobotanica 14: 5–341.
  • Rivieccio G, Aleffi M, Angiolini C, Bagella S, Bazan G, Bonini F et al. (2021) New national and regional Annex I Habitat records: from #26 to #36. Plant Sociology 58(2): 77–98. https://doi.org/10.3897/pls2021582/07
  • Sburlino G, Tomasella M, Oriolo G, Poldini L (2004) La vegetazione acquatica e palustre dell’Italia nord-orientale. 1 – La classe Lemnetea Tűxen ex O. Bolòs et Masclans 1955. Fitosociologia 41(1) Suppl. 1: 27–42.
  • Scoppola A (1982) Considérations nouvelles sur les végétations des Lemnetea minoris (R.Tx. 1955) Em. A. Schwabe et R.Tx. 1981 et contribution à l’etude de cette classe en Italie centrale. Documents Phytosociologiques, n.s. 6: 1–130.
  • Šumberová K (2011a) Vegetace volně plovoucích vodních rostlin (Lemnetea). Vegetation of free floating aquatic plants. In: Chytrý M. (Ed.), Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic 3. Aquatic and wetland vegetation], Academia Praha pp. 43–99.
  • Šumberová K (2011b) Vegetace vodních rostlin zakořeněných ve dně (Potametea). Vegetation of aquatic plants rooted in the bottom. In Chytrý M. (Ed.), Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic 3. Aquatic and wetland vegetation], Academia Praha, pp. 100–247.
  • Šumberová K, Hrivnák R, Rydlo J, Oťaheľová H (2011) Vegetace parožnatek (Charetea). Vegetation of stoneworts. In Chytrý M. (Ed.), Vegetace České republiky 3. Vodní a mokřadní vegetace [Vegetation of the Czech Republic 3. Aquatic and wetland vegetation], Academia Praha, pp. 248-267.
  • Tardella FM, Di Agostino VM (2020) Vegetation of the "Altipiani di Colfiorito" wetlands (central Apennines, Italy). Plant Sociology 57(2): 113–132. https://doi.org/10.3897/pls2020572/04
  • Theurillat JP, Willner W, Fernández-González F, Bültmann H, Čarni A, Gigante D et al. (2021) International Code of Phytosociological Nomenclature. 4th edition. Applied Vegetation Science 24: e12491. https://doi.org/10.1111/avsc.12491
  • Viciani D, Dell’Olmo L, Ferretti G, Lazzaro L, Lastrucci L, Foggi B (2016) Detailed Natura 2000 and Corine Biotopes habitat maps of the island of Elba (Tuscan Archipelago, Italy). Journal of Maps 12(3): 492–502. http://dx.doi.org/10.1080/17445647.2015.1044040
  • Viciani D, Ferretti G, Bernardini A, Raffaelli M, Lastrucci L (2021) An annotated checklist of the vascular flora of the Arezzo administrative province (Tuscany, Italy). Plant Biosystems 155(5): 971–982. https://doi.org/10.1080/11263504.2020.1810811
  • Viciani D, Geri F, Agostini N, Gonnelli V, Lastrucci L (2018) Role of a geodatabase to assess the distribution of plants of conservation interest in a large protected area: A case study for a major national park in Italy. Plant Biosystems 152(4): 631–641. https://doi.org/10.1080/11263504.2017.1308974
  • Viciani D, Gonnelli V, Sirotti M, Agostini N (2010) An annotated check-list of the vascular flora of the “Parco Nazionale delle Foreste Casentinesi, Monte Falterona e Campigna” (Northern Apennines Central Italy). Webbia 65(1): 3–131. http://dx.doi.org/10.1080/00837792.2010.10670867
  • Viciani D, Lastrucci L, Dell’Olmo L, Ferretti G, Foggi B (2014) Natura 2000 habitats in Tuscany (central Italy): synthesis of main conservation features based on a comprehensive database. Biodiversity and Conservation 23: 1551–1576. http://dx.doi.org/10.1007/s10531-014-0686-6
  • Viciani D, Vidali M, Gigante D, Bolpagni R, Villani M, Acosta ATR et al. (2020) A first checklist of the alien-dominated vegetation in Italy. Plant Sociology 57(1): 29–54. https://doi.org/10.3897/pls2020571/04
  • Zervas D, Tsiripidis I, Bergmeier E, Tsiaoussi V (2020) A phytosociological survey of aquatic vegetation in the main freshwater lakes of Greece. Vegetation Classification and Survey 1: 53–75. https://doi.org/10.3897/VCS/2020/48377
  • Zhang LL, Yin JX, Jiang YZ, Wang H (2012) Relationship between the hydrological conditions and the distribution of vegetation communities within the Poyang lake national nature reserve, China. Ecological Informatics 11: 65–75. https://doi.org/10.1016/j.ecoinf.2012.05.006
  • Zivkovic L, Biondi E, Pesaresi S, Lasen C, Spampinato G, Angelini P (2017) The third report on the conservation status of habitats (Directive 92/43/EEC) in Italy: processes, methodologies, results and comments. Plant Sociology 54(2): 51–64. http://dx.doi.org/10.7338/pls2017542/06

Appendix

Viciani et al. Contribution to the knowledge of aquatic vegetation of montane and submontane areas of Northern Apennines. Plant Sociology.

Site abbreviation Site name Lat (°) Long (°) Elevation m a.s.l. Wetland type Reference to published data
A Asqua 43.796964, 11.782587 727 Small lake
Be Beccia 43.708008, 11.916856 951 Small ponds
C Campigna 43.874481, 11.743633 1,166 Pond
Cam Camarelle 43.685020, 12.107370 954 Ponds
Cast Lago di Castelnuovo 43.646771, 12.081608 541 Lake
ErN Eremo Nuovo 43.819104, 11.887456 893 Small lake
G Gorga Nera 43.877920, 11.684562 1,29 Pond
LI Lago degli Idoli 43.864074, 11.691800 1,374 Small lake
LPe Lago delle Pescaie 43.573863, 11.988761 536 Lake Relevés from Lastrucci et al. (2006)
LPi Lago Pianacci 43.722407, 11.903239 628 Lake
LV Lago del Vinco 43.716096, 11.910387 801 Small lake
MC Monte Cavallo 43.674691, 12.100705 768 Ponds
Me Metaleto 43.789484, 11.815124 899 Small lake
Mv Monte Verde 43.676265, 12.122311 1,028 Small lake
Pi La Pianca 43.740200, 12.115532 1,03 Ponds Relevés from Lastrucci et al. (2005)
Poz Pozzolo 43.667496, 12.114135 910 Pond
Pr Pratelle 43.738875, 11.986408 969 Ponds
Prt Pratalino 43.720983, 11.928446 966 Small lake
PS Poggio Sambuco 43.691791, 12.106996 1,001 Small lake
PStr Pozza delle Strosce 43.614585, 11.948222 1,345 Small pond
St Stammerina 43.802265, 11.861270 1,11 Pond
T Laghetto Traversari 43.807336, 11.819495 1,077 Small lake
To Il Toro 43.719856, 11.951316 1,032 Pond
References
Lastrucci L, Foggi B, Gonnelli V, Gusmeroli E (2006) La vegetazione delle aree umide dei substrati ultramafici dell’Alta Valtiberina (Arezzo, Italia centrale). Studia Botanica 24 (2005): 9–44.
Lastrucci L, Gonnelli V, Foggi B (2005) Flora e vegetazione di alcune aree umide dell’altopiano della “Pianca” nell’alta Val Marecchia (Provincia di Arezzo, Toscana). Informatore Botanico Italiano 36(2) (2004): 429–442.